Universität Potsdam Institut für Mathematik Dr. Rosa Preiß Summer Semester 2023

Stieltjes integration and iterated integrals

Exercise Sheet 1

Discussion Wednesday April 26

- **Exercise 1.** (1) Let \mathcal{R} be a set theoretic ring. Show that $A \cap B \in \mathcal{R}$ for all $A, B \in \mathcal{R}$.
 - (2) Show that there is a set theoretic ring \mathcal{R} over a set Ω and an $A \in \mathcal{R}$ such that $\Omega \setminus A \notin \mathcal{R}$.

Exercise 2. Let $\mu : \Omega \to \hat{\mathbb{R}}$ be a signed measure and (P, Q) a Hahn decomposition of Ω corresponding to μ .

(1) Show that

$$\mu^{+} = \min_{\substack{\mu_{1},\mu_{2} \in \mathcal{M}_{\geq 0}(\Omega):\\ \mu_{1}-\mu_{2}=\mu}} \mu_{1}, \quad \mu^{-} = \min_{\substack{\mu_{1},\mu_{2} \in \mathcal{M}_{\geq 0}(\Omega):\\ \mu_{1}-\mu_{2}=\mu}} \mu_{2}, \quad \mu^{+}+\mu^{-} = \min_{\substack{\mu_{1},\mu_{2} \in \mathcal{M}_{\geq 0}(\Omega):\\ \mu_{1}-\mu_{2}=\mu}} (\mu_{1}+\mu_{2})$$

- (2) Show that (μ^+, μ^-) is the unique decomposition $\mu = \mu^+ \mu^-$ into nonnegative measures such that $\mu^+ \perp \mu^-$.
- (3) Show that (μ^+, μ^-) is the unique decomposition $\mu = \mu^+ \mu^-$ into nonnegative measures such that $\mu^+(\Omega) = \sup \mu$ and $-\mu^-(\Omega) = \inf \mu$.

Exercise 3. Show that if μ_f exists, then f is locally bounded and right-continuous with left limits existing (cadlag).