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A rough path perspective on renormalization

A rough path perspective on renormalization
joint with Yvain Bruned, Ilya Chevyrev and Peter Friz

We look at equations with rough driver given by a collection of smooth
vector fields f = (f1, . . . , fd).
In the case of the Itô-Stratonovich correction for a d-dimensional Brownian
motion B with covariation [Bi, Bj ]t = Cijt, we have

dY = f (Y ) dStratB

if and only if

dY = f (Y ) dItôB + 1
2

d∑
i,j=1

Cij(fi ▷ fj)(Y )dt.
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A rough path perspective on renormalization

Recall...
Definition (e.g. Hairer-Kelly ’14)
A d-dimensional γ-Hölder weakly geometric rough path is a map
X : [0, T ]2 → T((Rd)) such that

1. ⟨Xst, 1⟩ = 1 and ⟨Xst, w� v⟩ = ⟨Xst, w⟩⟨Xst, v⟩ for all words
w, v ∈ T(Rd),

2. ⟨Xst, w⟩ = ⟨Xsu ⊗Xut, ∆•w⟩ for all words w ∈ T(Rd),
3. sups ̸=t

|⟨Xst,w⟩|
|t−s|γ|w| <∞ for all words w ∈ T(Rd).

Definition
dY = f(Y )dX ⇔ Yt − Ys =

∑
|w|≤γ−1

fw(Yt)⟨Xst, w⟩+ o(|t− s|)

where fi•w = fi ▷ fw, fi = fi
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A rough path perspective on renormalization

Recall...
Definition (e.g. Hairer-Kelly ’15)
A d-dimensional γ-Hölder branched rough path is a map X : [0, T ]2 → H∗

such that
1. ⟨Xst, 1⟩ = 1 and ⟨Xst, ζ1 ⊙ ζ2⟩ = ⟨Xst, ζ1⟩⟨Xst, ζ2⟩ for all forests

ζ1, ζ2 ∈ H,
2. ⟨Xst, ζ⟩ = ⟨Xsu ⊗Xut, ∆⋆ζ⟩ for all forests ζ ∈ H,
3. sups ̸=t

|⟨Xst,ζ⟩|
|t−s|γ|ζ| <∞ for all forests ζ ∈ H.

Definition
dY = f(Y )dX ⇔ Yt − Ys =

∑
|τ |≤γ−1

fτ (Yt)⟨Xst, τ⟩+ o(|t− s|)

where fτ1↷τ2 = fτ1 ▷ fτ2 , f•i = fi, τ1 ↷ τ2 = πB(τ1 ⋆ τ2)
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A rough path perspective on renormalization

We construct a homomorphism Tv with Tvi = i + vi (Tv•i = •i + vi)
such that
Theorem (Bruned-Chevyrev-Friz-P. ’17)
Let v = (vi)i ⊂ BN , γ ∈ (0, 1) and X a d-dimensional weakly geometric
(branched) rough path. Then, TvX is a γ/N -Hölder d-dimensional weakly
geometric (branched) rough path.

Theorem (Bruned-Chevyrev-Friz-P. ’17)
In the same setting, Y is an RDE solution to

dY = f (Y ) d (TvX)

if and only if Y is an RDE solution to

dY = fv(Y )dX.
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A rough path perspective on renormalization

We construct a homomorphism Tv with Tvi = i + vi (Tv•i = •i + vi)
such that
Theorem (Bruned-Chevyrev-Friz-P. ’17)
Let v ≡ v0 ∈ BN without a label 0, γ ∈ (0, 1) and X a d + 1-dimensional
weakly geometric (branched) rough path whose zeroth component is time.
Then, TvX is a γ ∧N−1-Hölder d + 1-dimensional weakly geometric
(branched) rough path whose zeroth component is time.

Theorem (Bruned-Chevyrev-Friz-P. ’17)
In the same setting, Y is an RDE solution to

dY = f (Y ) d (TvX)

if and only if Y is an RDE solution to

dY = f(Y )dX + fv(Y )dt.
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A rough path perspective on renormalization

Weakly geometric case:
Prim(T(Rd), ∆�) = g(Rd) is the free Lie algebra over Rd

⇒ Tv : T((Rd))→ T((Rd)) is unique as a (continuous) algebra
homomorphism

Branched case:
Prim(H, ∆⊙) = Bd is the free pre-Lie algebra over Rd

⇒ Tv : H∗ → H∗ is unique as a continuous algebra homomorphism whose
restriction to Bd is a pre-Lie algebra homomorphism
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A rough path perspective on renormalization

We construct a set M[0,T ] of admissable models of a regularity structure
with renormalisation group G− such that

Theorem (Bruned-Chevyrev-Friz-P. ’17)

There is a bijective map which maps a branched rough path X whose
zeroth component is time to the unique admissable model (Π, Γ) ∈M[0,T ]
with the property that

(Πsφ(τ))(t) = ⟨Xst, τ⟩ for all τ ∈ B, s, t ∈ [0, T ].

Theorem (Bruned-Chevyrev-Friz-P. ’17)

There is a one-to-one correspondence between elements v ∈ B⌊1/γ⌋

without a label 0 and ℓ ∈ G− such the following diagram commutes

X ←→ Π
↓ ↓
TvX ←→ ΠMℓ
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Signatures of paths transformed by polynomial maps

Signatures of paths transformed by polynomial maps
joint with Laura Colmenarejo

Theorem (Colmenarejo-P. ’18)
For p : Rd → Rm a polynomial map with p(0) = 0, we have

⟨σ(p(X)), w⟩ = ⟨σ(X), Mpw⟩

Here, Mp(e) = e and

Mp(wi) =
d∑

j=1
(Mp(w)� kij

p ) • j

where kij
p is the shuffle polynomial corresponding to the (i, j)-entry of the

Jacobian matrix of p.
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Signatures of paths transformed by polynomial maps

For any non-empty words w, v

w� v = w ≻ v + v ≻ w.

w ≻ (v ≻ u) = (w ≻ v + v ≻ w)≻ u (Zinbiel identity)

Theorem (Schützenberger ’58)
Indeed, (T≥1(Rd),≻) is the free Zinbiel algebra over Rd.

I.e., for any Zinbiel algebra (Z,⋟) and any linear map L : Rd → Z, there
is a unique homomorphism ΛL : (T≥1(Rd),≻)→ (Z,⋟) such that

Rd (T≥1(Rd),≻)

(Z,⋟)

ι

L
ΛL
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Signatures of paths transformed by polynomial maps

Theorem (Colmenarejo-P. ’18)

Let L : Rm → T≥1(Rd) be a linear map and X : [0, L] −→ Rd be a
piecewise continuously differentiable path with X0 = 0. Then, for all
non-empty words w, ⟨

σ(XL), w
⟩

= ⟨σ(X), ΛL(w)⟩ ,

where (XL)i
t :=

⟨
σ

(
X|[0,t]

)
, Li

⟩
.

or, equivalently,

Theorem (e.g. Gehrig-Kawski ’08)∫ s

0
Xa

t dXb
t = Xa≻b

s

for any a, b ∈ T≥1(Rd), where Xa
t := ⟨σ(X|[0,t]), a⟩
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Areas of areas generate the shuffle algebra

Areas of areas generate the shuffle algebra
joint with Joscha Diehl, Terry Lyons and Jeremy Reizenstein

X(0)

X(t1)

X(t2)

X(T )+

−

SignedArea(X1, X2)t = 1
2

( ∫ t

0
X1

s dX2
s −

∫ t

0
X2

s dX1
s

)
.
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Areas of areas generate the shuffle algebra

Define
area(a, b) := a≻ b− b≻ a

Area(Xa, Xb)T =
⟨
σ(X), area(a, b)

⟩
.

area is non-associative,

area(area(1, 2), 3) = 123− 132 + 213− 231− 312 + 321
̸= 123− 132− 213 + 231− 312 + 321 = area(1, area(2, 3))

area is anticommutative, but doesn’t satisfy the Jacobi identity,

area(1, area(2, 3)) + area(2, area(3, 1)) + area(3, area(1, 2))
= −123 + 132 + 213− 231− 312 + 321 ̸= 0
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Areas of areas generate the shuffle algebra

However, area satisfies the so-called Tortkara identity introduced by
Dzhumadil’daev in 2007:

area(area(a, b), area(c, b)) = area(vol(a, b, c), b),

where

vol(x, y, z) := area(area(x, y), z) + area(area(y, z), x) + area(area(z, x), y).
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Areas of areas generate the shuffle algebra

Let A (Rd) be the smallest Tortkara subalgebra of (T≥1(Rd), area) that
contains the letters.
Theorem (Dzhumadil’daev-Ismailov-Mashurov ’18)

A (Rd) = Rd ⊕
⊕
i<j

T(Rd) • (ij− ji).

Applications (Diehl-Lyons-P.-Reizenstein ’20, ’21):
F t 7→ ⟨σ(X↾[0,t]), ϕ⟩ is piecewise linear for all piecewise linear paths X

if and only if ϕ ∈ R⊕A (Rd)
F for a martingale M (linear interpolation M of a discrete martingale)

whose Stratonovich expected signature exists for each
sub-timeinterval, t 7→ ⟨σ(M↾[0,t]), ϕ⟩ is a martingale (linear
interpolation of a discrete martingale)
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Areas of areas generate the shuffle algebra

Theorem (Diehl-Lyons-P.-Reizenstein ’20)
T≥1(Rd) is shuffle generated by A (Rd), i.e.

span{a1 � . . .� an : n ≥ 1, ai ∈ A (Rd)} = T≥1(Rd)

This is a corollary of the following more general fact.

Theorem (Diehl-Lyons-P.-Reizenstein ’20)
Let Xn ⊆ Tn(Rd) and X =

∪
n Xn. Then,

For all n ≥ 1, for all nonzero L ∈ gn there is an x ∈ Xn such that
⟨x, L⟩ ̸= 0

if and only if
X shuffle generates the shuffle algebra T(Rd).
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Areas of areas generate the shuffle algebra

Theorem (based on Rocha ’03)
R =

∑
w w ⊗ r(w) =

∑
w ρ(w)⊗ w solves (D − id)R = 1

2R ⊵Sym R.

Here, (p1 ⊗ q2) ⊵Sym (p2 ⊗ q2) = area(p1, p2)⊗ [q1, q2],
D(w ⊗ v) = |v|w ⊗ v on words w, v, and r is the Dynkin map.

τ− ⊵ ⊵Sym ???

⪰ ⪯ pre Lie [·, ·]■ Lie

+ ■ associative

(−)

(+)

dendriform

(−)
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Areas of areas generate the shuffle algebra

Open Problems

ä Do left bracketings of area form a linear basis of A (Rd)? Is A (Rd)
free as a Tortkara algebra? Twice yes in d = 2!

ä How can we build a free generating set of the shuffle algebra in terms
of nested monomials of area?

ä What is the span of the terms area(i1 � · · ·� in, j1 � · · ·� jm),
n, m ∈ N, i1, . . . in, j1, . . . jm letters? What is their shuffle span
together with the letters?

ä Can we characterize càdlàg martingales via areas of areas? In the
meantime, call random rough paths with vanishing expected signature
on A (Rd) martingaloids.
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Areas of areas generate the shuffle algebra

Thank you.
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