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Zusammenfassung in deutscher
Sprache

In der Gesamtschau von drei verschiedenen gemeinschaftlichen Projekten sammeln wir Erkennt-
nisse wie Hopf, Lie und pre-Lie, Zinbiel und dendriform, sowie Tortkara Algebren in der system-
atischen kombinatorischen Betrachtung von iterierten Integral Signaturen (engl. iterated-integral
signatures) und rauen Pfaden (engl. rough paths) auftreten und diese weiterentwickeln.

Erstens untersuchen wir wie Lie und pre-Lie Strukturen von Lie Polynomen und Bäumen Hopf
Algebren Homomorphismen erzeugen die dazu verwendet werden können die höheren Einträge
von rauen Pfaden zu verschieben und dadurch auf eine Art zu renormieren. Wir beschreiben
ein Zusammenspiel auf der Ebene von rauen Differentialgleichungen (engl. rough differential
equations, RDEs) angetrieben von dem verschoben rauen Pfad vs dem ursprünglichen rauen
Pfad, und betrachten ferner eine Bijektion zwischen diesen Verschiebungen-Renormierungen und
einer Renormierungsgruppe einer zugehörigen Regularitätsstruktur (engl. regularity structure).

Zweitens beantworten wir eine Frage von Bernd Sturmfels dazu wie sich die Signatur eines
Pfades p(X) aus der Signatur des ursprünglichen Pfades X berechnen lässt. Nachdem wir dies
mit elementaren Methoden diskutiert haben, erklären wir wie es sich auch als Korollar eines viel
allgemeineren Theorems zu Homomorphismen der halfshuffle Zinbiel Algebra vs der iterierten In-
tegral Signatur auffassen lässt, welches unmittelbar equivalent ist zu einer klassischen halfshuffle
Beziehung der Signatur.

Als letztes untersuchen wir wie die vorzeichenbehaftete Fläche (engl. signed area) eines zwei-
dimensionalen Pfades und der Verbindungslinie zwischen Startpunkt und Endpunkt einer alge-
braischen antikommutativen area Operation entspricht die die Tortkara Identität erfüllt. Wir
behandeln erneut die Arbeiten von Rocha zu Koordinaten der ersten Art (engl. coordinates of the
first kind), die ihn veranlasst haben, eine solche area Operation zum ersten Mal einzuführen, eine
Theorie die man mittels einer dendriform Algebra und ihrer kanonischen pre-Lie, symmetrisierten
pre-Lie, Lie und assoziativen Operationen beschreiben kann. Während unser Hauptresultat
dieses Projektes aus der Aussage besteht, dass die ganze shuffle Algebra von shuffle Polynomen
von area Polynomen linear erzeugt wird, eine Erkenntnis die eine Vermutung von Lyons positiv
beantwortet, dass die Kenntnis aller areas of areas ausreicht um die Signatur eines Pfades zu
berechnen, erhalten wir zusätzlich Anwendungen im Bereich stückweise linearer Pfade, wobei
areas of areas denjenigen Signatur Komponenten entsprechen, die garantiert wieder stückweise
linear sind, und im Bereich der stochastischen Analysis, wo wir Martingaloide (engl. martin-
galoids), raue Pfade deren erwartete Signatur (engl. expected signature) auf den areas of areas
verschwindet, als Verallgemeinerung von kontinuierlichen Martingalen und stückweise linearen
Interpolationen von zeitdiskreten Martingalen mit endlicher erwarteter Signatur einführen.
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Abstract

Over the course of three different collaborative projects, we gather evidence of how Hopf, Lie
and pre-Lie, Zinbiel and dendriform, as well as Tortkara algebras appear in and influence the
systematic combinatorial treatment of iterated-integral signatures of paths and rough paths.

First, we investigate how Lie and pre-Lie structures of Lie polynomials and trees give rise
to Hopf algebra homomorphisms which one can use to translate the higher orders of rough
paths, and thus in a sense renormalize them. We obtain an interplay at the level of the rough
differential equations (RDEs) driven by the translated rough path vs the original rough path, and
furthermore explore how this translation-renormalization is in bijection with a renormalization
group of a corresponding regularity structure.

Secondly, we answer a question by Bernd Sturmfels of how the signature of a path under
a polynomial map p(X) can be retrieved from the signature of the original path X. After we
discussed this with elementary means, we explain how this can be seen as a corollary of a much
more general statement on homomorphisms on the halfshuffle Zinbiel algebra vs the iterated-
integral signature, which can be seen as being immediately equivalent to the classic halfshuffle
relation of the signature.

Finally, we study how the signed area enclosed by a two-dimensional path and the connection
line between starting point and end point corresponds to an algebraic anticommutative area
operation satisfying the Tortkara identity. We revisit the work of Rocha on coordinates of the
first kind which led him to introduce such an area operation for the first time, work which
can be formulated in terms of a dendriform algebra and the pre-Lie, symmetrized pre-Lie, Lie
and associative operations it canonically induces. With our main result in this project being
the fact that the whole shuffle algebra can be expressed in terms of shuffle polynomials of area
polynomials, which answers a conjecture by Lyons that the knowledge of all areas of areas
suffices to compute any arbitrary signature component, we furthermore obtain applications in
terms of piecewise linear paths, where areas of areas correspond to those signature components
that are guaranteed to be piecewise linear again, and in terms of stochastic analysis, where we
introduce martingaloids, rough paths whose expected signature vanishes on the areas of areas,
as a generalization of continuous martingales and piecewise linear interpolations of time-discrete
martingales with finite expected signature.
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Chapter 1

Introduction

1.1 From operations on path space to the iterated-integral
signature

Just as one understands vectors as objects which can be added and scaled, with addition and
scalar multiplication satisfying certain identities, we want to understand paths as objects which
can be combined and modified by certain operations. If we look at the space of continuous
rectifiable paths BV(Rd), also called bounded variation paths, i.e. continuous paths X : [0, TX ]→
Rd with a finite length, we can come up with the following natural operations:

1. Concatenation, ⊔ : BV(Rd)× BV(Rd)→ BV(Rd),

(X ⊔ Y )(t) :=
{︄
X(t), t ≤ TX ,

Y (t− TX)− Y (0) +X(TX), TX < t ≤ TX + TY ,

(cf. [Che54, Section 1, page 503]), i.e. putting two paths X and Y after each other by
translating Y in such a way that the starting point of Y lands on the endpoint of X,

2. time inversion, ←−D : BV(Rd)→ BV(Rd), ←−X := (←−D X)(t) := X(TX − t),

3. reparametrization, pα : BV(Rd)→ BV(Rd), (pαX)(t) := X(α(t/TX)TX), where α : [0, s]→
[0, 1] is a continuous bijection,

4. translation, tz : BV(Rd)→ BV(Rd), (tzX)(t) := z +X(t), where z ∈ Rd,

5. rescaling, δλ : BV(Rd)→ BV(Rd), (δλX)(t) := λX(t), where λ ∈ R,

6. linear transformation, A : BV(Rd)→ BV(Rd), (AX)(t) := AX(t), where A ∈ GL(Rd).

Now while a vector in a separable Banach space can be stored digitally up to arbitrary
precision, in a way that respects both addition and scalar multiplication, by choosing a Schauder
basis, one may ask for a way to store a path as a series of numbers which is likewise compatible
with our operations 1-5. One may of course interpret paths just as vectors in a separable Banach
function space again, but this in no way reflects concatenation and reparametrization. Another
strategy, which is indeed quite important, is to approximate through piecewise linear paths,
but the author of this thesis can’t think of a way to do this which at the same time respects
concatenation, time inversion and reparametrization, though she doesn’t have a proof for this
no-go statement. The best reparametrization invariant way to piecewise linearly approximate
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2 CHAPTER 1. INTRODUCTION

a rectifiable path that comes to mind would be to parametrize by path length, take values
equidistantly at a fixed small time step ∆t and then reduce the time step e.g. dyadically 1

2n ∆t,
with the endpoint as the last timestep, but concatenation or time inversion would not respect
the structure of the equidistant time increments and there is no way to generalize this to lower
regular paths with infinite variation.

In fact, the solution to this question being central to this thesis will be invariant to both
translation and reparametrization, while it respects concatenation and time inversion in the
following way: We are going to introduce a map σ : BV(Rd) → G, where G is a group with
product •, such that, as said,

σ(tzX) = σ(X) = σ(pαX)
and such that it is a (semigroup) homomorphism of concatenation, with the group inverse cor-
responding to time inversion:

σ(X ⊔ Y ) = σ(X) • σ(Y ), σ(←−D X) = σ(X)−1. (1.1)

From this, one can see that e.g. σ(X ⊔←−X ) will be equal to the group unit element for all paths
X, and thus the map σ will also not be injective up to translation and reparametrization, i.e.
the equivalence classes given by σ(X) = σ(Y ) will be even larger. However, it will turn out to
still be sufficiently small for σ to provide a powerful representation of paths as group elements.

To come back to a series of real numbers, the group G will turn out to be a subset of the
dual space of an infinite dimensional vector space. The numbers which store σ(X) will then be
given as ⟨σ(X), wi⟩, where (wi)i is a basis.

The final remark which leads to the actual definition of σ is that each component ⟨σ(·), w⟩
can be seen as a function of time again, i.e. t ↦→ ⟨σ(X↾[0,t]), w⟩. Now kind of the fundamen-
tal construction principle of the homomorphism σ is that each Stieltjes-Integral of one of its
components against another is again a component of σ, i.e. for each a, b there is a c such that∫︂ T

0
⟨σ(X↾[0,t]), a⟩ d⟨σ(X↾[0,t]), b⟩ = ⟨σ(X), c⟩, (1.2)

for all bounded variation X, where t is the integration variable.
We consider the iterated-integral signature σ(X) of a path X as an element of T ((Rd)), the

dual space of the space of words T (Rd), i.e.

⟨σ(X), i1 · · · in⟩ =
∫︂ T

0

∫︂ rn

0
· · ·
∫︂ r2

0
dXi1

r1
. . . dXin

rn
.

This means that the signature is an infinite series of numbers, assigning the real value of an
iterated integral to any word in T (Rd). This construction was first introduced by Kuo-Tsai Chen
in 1954 [Che54, Theorem 3.1] under the name exponential homomorphism[Che54, Section 3]1.

The definition of the signature is recursive, as the following equivalent formulation demon-
strates:

⟨σ(X), e⟩ = 1, ⟨σ(X), wi⟩ =
∫︂ T

0
⟨σ(X↾[0,t]), w⟩ dXi

t

Now, let us check how the signature does exhibit the properties we discussed before.
Translation invariance is clear due to the fact that Stieltjes integrals are translation invariant

in the function which one integrates against.
1Chen’s exponential homomorphism ([Che54, Theorem 3.1] was technically not defined on path space directly

though, but on equivalence classes of paths under the coarsest equivalence relation ≡ such that X ⊔Y ⊔
←−
Y ⊔Z ≡

X ⊔ Z for all paths X, Y, Z.
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Reparametrization invariance follows from the change of variables formula for Stieltjes inte-
gration (e.g. [Apo74, Theorem 7.7]), which states that if for some continuous bijection h, f is
Stieltjes integrable against g on [h(s), h(t)], then f ◦h is Stieltjes integrable against g ◦h on [s, t]
with ∫︂ t

s

f(h(r)) dg(h(r)) =
∫︂ h(t)

h(s)
f(r) dg(r).

The compatibility with rescaling is a graded one, i.e. for all words w we have

⟨σ(δλX), w⟩ = λ|w|⟨σ(X), w⟩,

were |w| denotes the length of the word w, i.e. the number of letters in w. This is a simple conse-
quence of the fact that Stieltjes-Integrals are bilinear, and thus iterated integrals are multilinear.

As for linear transformation, we have [Che57, Theorem 3.1]

⟨σ(AX), a⟩ = ⟨σ(X),MA⊤a⟩,

where MA⊤ is recursively given as MA⊤wi = (MA⊤w)(A⊤i) with MA⊤i = A⊤i. This also
follows directly from the bilinearity of Stieltjes integrals. See [Die13], [DR19] and [DPRT22] for
invariants of this map, i.e. linear combinations of iterated integrals which are invariant under the
action of certain subgroups of GL on the path, something that Chen already gave examples for
in [Che57, Example 2].

The first main algebraic property of the signature is Chen’s identity, which states how the
signature of a concatenation of paths can be computed from the signature of the individual paths,
[Che54, Lemma 1.1, Lemma 1.2]

⟨σ(X ⊔ Y ), a⟩ =
•∑︂

(a)

⟨σ(X), a1⟩⟨σ(Y ), a2⟩.

Here,
∑︁•

(a) a1 ⊗ a2 := ∆• a is Sweedler’s notation of the coproduct ∆• dual to the concatena-
tion product • of words given by w1 • w2 = w1w2. I.e., the deconcatenation coproduct ∆• is
characterized by

⟨∆• a, b⊗ c⟩ = ⟨a, b • c⟩

Chen’s identity can thus also be written as σ(X⊔Y ) = σ(X)•σ(Y ) [Che54, Theorem 3.1][Che57,
Theorem 2.1], showing that the signature is indeed a semigroup homomorphism respecting the
concatenation of paths.

Furthermore, the signature satisfies the shuffle relation

⟨σ(X), a⟩ ⟨σ(X), b⟩ = ⟨σ(X), a� b⟩ ,

as proven in Ree’s 1958 publication [Ree58, Equation (2.5.2)]2, which is nothing but integration
by parts for iterated integrals. While the formal, recursive definition of the shuffle product �
will be given in Definition 3.2.2 and in Section 4.1.1, more intuitively it can be explained as the
bilinear product which maps two words w1, w2 to the sum all shuffles of the letters of the two
words which preserve the orders of the letters in the two individual original words, just like a
riffle shuffle of two decks of cards preserves the orders of the cards in the two individual decks.

2Chen already showed before that the log signature log• σ(X) of a C1 path is a Lie series [Che57, Theorem 4.2],
a fact that Ree showed in [Ree58, Theorem 2.5] is equivalent to the shuffle relation, but Ree also showed the shuffle
relations for iterated integrals of bounded variation paths [Ree58, Equation (2.5.2)] directly through an induction
using integration by parts.
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Now, it turns out that whenever two tensor series g1, g2 ∈ T ((Rd)) satisfy the shuffle relation,
their concatenation g1 • g2 also does so. This makes the set G of all non-zero tensor series
satisfying the shuffle relation, i.e. the set of characters for the shuffle product, a semigroup.
Since e ∈ G with e • g = g • e = g, it is even a monoid.

The compatibility of � and ∆• turn (T (Rd),�,∆•) into a bialgebra. The existence of a
linear map S : T (Rd)→ T (Rd) with the property

•∑︂
(a)

S(a1)� a2 =
•∑︂

(a)

a1 � S(a2) = ⟨a, e⟩ e

for all a ∈ T (Rd), a so-called antipode, makes (T (Rd,�,∆•) a Hopf algebra, where S is uniquely
given by

S(e) = e, S(i1 · · · in) = (−1)nin · · · i1.

In this case, the antipode S is self-dual, and thus, using the shuffle identity for g ∈ G,

⟨S(g) • g, a⟩ =
•∑︂

(a)

⟨S(g), a1⟩⟨g, a2⟩ =
•∑︂

(a)

⟨g, S(a1)⟩⟨g, a2⟩ =
•∑︂

(a)

⟨g, S(a1)� a2⟩ = ⟨e, a⟩

for all a ∈ T (Rd), since ⟨g, e⟩ = 1 for all g ∈ G, showing that each g ∈ G has an inverse g−1 = Sg.
Thus, we indeed have that the image of σ lives inside a group. One then shows σ(←−X ) = S(σ(X)),
and with that, we finally arrive at (1.1).

What remains is equation (1.2), and here, it turns out that the shuffle product can be naturally
split into two parts,

a� b = a≻ b+ b≻ a,

where the bilinear ≻ is called the halfshuffle product, which is non-associative, but satisfies the
(left) Zinbiel identity

a≻ (b≻ c) = (a≻ b+ b≻ a)≻ c.
Now, one can actually see from the original proof of Ree’s shuffle identity in [Ree58, Section 2,
page 216] that we indeed have∫︂ T

0
⟨σ(X↾[0,t]), a⟩ d⟨σ(X↾[0,t]), b⟩ = ⟨σ(X), a≻ b⟩.

For the formal definition of the halfshuffle we refer to Definition and Section, but the half-
shuffle w1 ≻ w2 of two words can be understood as those summands of the full shuffle w1 � w2
that have the last letter of w2 as their last letter. In the analogy to shuffling decks of cards, this
corresponds to all the possible decks obtained from two original decks by first putting aside the
lowest card of the second deck, then riffle shuffling the two decks once, and then putting back
the card from the side as the lowest card of the resulting deck.

The signature uniquely determines the path up to tree-like equivalence. This was shown for
piecewise C1 paths in [Che58, Theorem 4.1], for bounded variation paths in [HL10, Theorem 4],
and [BGLY16, Theorem 1.1] implies it for paths of Hölder regularity greater than 1/2. By
[BGLY16, Definiton 1.1], a tree-like path is a path X for which there is an R-tree τ , a continuous
map ϕ : [0, TX ] → τ with ϕ(0) = ϕ(TX) and a map ψ : τ → Rd such that X = ψ ◦ ϕ.
An R-tree (τ , d) is a metric space such that for any two distinct points x, y ∈ τ there is a
unique isometry Y : [0, d(x, y)] → Im Y ⊆ τ with Y (0) = x and Y (d(x, y)) = y (cf. [HL08,
Definition 2.1]). We then say that X and Y are tree-like equivalent, X tree∼ Y , iff X ⊔

←−
Y is tree-

like ([BGLY16, Section 2]). As tree-like paths form the kernel of the semigroup homomorphism
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σ, the signature forms group monomorphism σ :
(︁
BV(Rd)/ tree∼

)︁
→ Gd, where elements of the

quotient can be represented by the unique element of an equivalence class with the shortest
length, parametrization according to length and zero as starting point. These representatives
are called reduced paths with standard parametrization, and we call

(︁
BV(Rd)/ tree∼

)︁
the reduced

path group (of bounded variation paths). Note that in particular (pαX) tree∼ X
tree∼ (tzX). It

is furthermore interesting to note that the reduced path group of bounded variation paths (or
equivalently its image inside Gd), together with the metric given by the distance of two reduced
paths X and Y being the length of the reduced path tree-like equivalent to ←−X ⊔ Y , is itself an
R-tree (cf. the similar statement for finite p-variation rough paths [BGLY16, Proposition 4.1]).
This metric does not give the reduced path group a topological group structure however, as the
group inverse [X] ↦→ [←−X ] is incontinuous under the R-tree metric.

Through the theory of Young integration, all iterated integrals of paths with finite p-variation
for some p < 2 are well-defined as Stieltjes-integrals [You36, Theorem on Stieltjes integrability,
pages 264-265]. Thus, all of the above holds true completely analogously for p-variation paths
with p < 2, which include Hölder continuous paths of Hölder regularity greater than 1/2, only
the problem of defining a representative for any tree-like equivalence class and an R-tree-metric
on the reduced path group is now much more involved.

Signatures have proven a very valuable tool in machine learning. I.e., one uses a truncated
signature to store information about the path or to classify data sets consisting of several multi-
dimensional time series (see e.g. [?, chevyrevkormilitzin2016]. Beyond using a truncated signa-
ture, also signature kernel methods have been recently proposed ([KO19, Section 3],[SCF+21,
Section 2 and Section 4] and the “normalized signature kernel” in [CO22, Section 6]), where
the untruncated kernel defined by ks,t(X,Y ) :=

⟨︁
σ(X↾[0,s]), σ(Y ↾[0,t])

⟩︁
[SCF+21, Definition 2.4]

can be obtained numerically by numerical schemes for the partial differential equation [SCF+21,
Theorem 2.5]

∂2ks,t(X,Y )
∂s ∂t

= ⟨Ẋs, Ẏt⟩ ks,t(X,Y ),

with initial conditions ks,0(X,Y ) = k0,t(X,Y ) = 1. While this Goursat PDE is only well-
defined for X,Y differentiable, a more general integral equation determining ks,t(X,Y ) is given
by [SCF+21, Theorem 4.11].

Fascinating about signature theory is how it brings together so many different branches
of mathematics, including rough path analysis, stochastic analysis and classical analysis, ab-
stract and universal algebra, representation theory, invariant theory ([Die13],[DR19],[DPRT22]),
(co)homology and homotopy ([Che77],[Hai02]), matrix theory, noncommutative geometry [Kap09],
algebraic geometry ([AFS19],[Gal19],[CGM20]), ODE solution theory (see e.g. [BCE20, Sec-
tion 3]), dynamical systems, machine learning ([CK16],[Rei19]).

1.2 Rough Paths and RDEs
The theory of rough paths carries over signature theory to lower regular paths. Moreover, it
provides a solution theory for differential equations

dY = f (Y ) dX

driven by low regular paths as they arise naturally in stochastic analysis, the most prominent
example being Brownian motion, which is γ-Hölder continuous for any γ < 1/2. Even lower
regular is fractional Brownian motion for Hurst parameter smaller than 1/2.

While stochastic integration theories due to Itô and Stratonovich provide a probabilistic
solution theory for large classes of stochastic processes, rough path theory gives a deterministic



6 CHAPTER 1. INTRODUCTION

solution theory once all iterated integrals of the driving path are specified. Furthermore, it
can be shown that the solution map, the Itô-Lyons map, which for a fixed collection of vector
fields takes the driving rough path (i.e. the path together with all its iterated integrals over all
subintervals) as an input and gives the solution path as an output, is a Lipschitz continuous map
provided that vector fields are in C3

b (see [FH14, Theorem 8.5]). In contrast, the solution map
in stochastic analysis, the Itô map, is only measurable.

The modern formulation of rough paths distinguishes two classes, weakly geometric rough
paths on the one hand and branched rough paths on the other hand. Weakly geometric rough
paths (introduced by Lyons in [Lyo98, Definition 2.1.2, Lemma 2.1.1 and Definition 2.3.1] as
geometric p-muliplicative functionals, i.e. character valued paths of finite p-variation) are defined
analogously to signatures of paths of higher regularity, though now the shuffle identity and Chen’s
identity become part of the definition instead of being theorems.

Branched rough paths (introduced by Gubinelli in [Gub10, Defintion 7.2]) are designed to
allow for integration theories which do not respect the usual rules of calculus, and thus violate
the integration by parts condition encoded in the shuffle identity. Therefore, integrals such as∫︂ T

s

X1
srX

2
sr dX3

r ,

need to be specified additionally, while in the weakly geometric setting they can be decom-
posed into usual iterated integrals via the shuffle relation.

Instead of words, for branched rough paths one now uses trees and forests to encode iterated
integrals including products. Chen’s identity, however, is part of the definition of branched rough
paths, in the formulation

⟨Xst, τ⟩ = ⟨Xsu ⊗Xut,∆⋆ τ⟩,

where ∆⋆ is the so-called Connes-Kreimer coproduct, which cuts down trees into all combinations
of a lower part (trunk) and an upper part (crown, possibly a forest).

Uniqueness up to tree-like equivalence has been shown for the signature of weakly geometric
rough paths in [BGLY16, Theorem 1.1] and for branched rough paths in [BC19, Theorem 5.1],
which means that indeed signature theory extends seamlessly to the rough regime.

While geometric and branched rough paths are by now the two well-established classical no-
tions of rough paths, in fact, one can define a class of rough paths for any commutative connected
graded Hopf algebra. Important examples include quasi-geometric rough paths [KH13][Bel20,
Definition 3.7], which are based on the Hopf algebra of a commutative quasishuffle product with
the deconcatenation coproduct [Hof00, Equation (1), Theorem 2.1 and Section 3], and planarly
branched rough paths [CEMM20, Definition 6.7] which are based on the Munthe-Kaas-Wright
Hopf algebra of Lie group integrators [MW08, Definition 5 and Theorem 1].

1.3 Regularity structures and renormalization
While Rough Path Analysis provides a solution theory for SDEs, the theory of regularity struc-
tures, which in some sense generalizes the concept of rough paths, does so for a class of stochastic
partial differential equations (SPDEs), most notably those of the form

(∂t −∆)u = F (u,∇u) +G(u,∇u)ξ, (1.3)

where ξ is some stochastic noise, generically often white noise.
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A regularity structure, an object which encodes the general form of an SPDE, consists of a
structure group G continuously acting on a normed vector space T = (Tα)α∈A graded by a set
of real numbers A, such that {α ∈ A : α < n} is finite for all n, such that each Tα is a Banach
space and such that for any Γ ∈ G and x ∈ Tα, one has Γτ − τ ∈ T<α ([Hai14, Definition 2.1]).

Furthermore, it often makes sense, for example for parabolic SPDEs like 1.3, to scale time
differently than space. We thus introduce a scaling s = (s1, . . . , sd) ∈ Nd ([Hai14, Section 2.2]3)
and, even though it is not a norm, we write

∥x∥s =
d∑︂

i=1
|x|1/si ,

where ∥x − y∥s does define a proper metric ([Hai14, Equation (2.10)]). We also scale the test
functions we use in the theory according to s, namely we define

φλ
x(y) := λ−|s|ϕ(λ−s1(x1 − y1), . . . , λ−sd(xd − yd)),

where |s| :=
∑︁d

i=1 si ([Hai14, Equations (2.12) and (2.13)]).
A model for a regularity structure (A, T,G) over Rd consists then of two maps Π : Rd →

L(T,S ′(Rd)) and Γ : Rd × Rd → G such that

ΓxyΓyz = Γxz, ΠxΓxy = Πy,

satisfying the analytical properties

∥Γxyτ∥ℓ ≤ CK,m∥x− y∥m−ℓ
s , |(Πxτ)(φλ

x)| ≤ CK,mλ
m,

for all compact K ⊆ Rd and all m ∈ A, uniformly over all x, y ∈ K, all l < m, all test functions φ
supported on the ∥ · ∥s unit ball around zero with ∥φ∥Cr ≤ 1, and all λ ∈ (0, 1], where r is the
smallest integer being strictly greater than |minA| ([Hai14, Definition 2.17]). Each model gives
then rise to linear spaces of modelled distributions Dγ , which consist of all locally bounded maps
f : Rd → T<γ such that

∥fx − Γxyfy∥ℓ ≤ CK∥x− y∥γ−ℓ
s

for all compact sets K ⊆ Rd, uniformly over all ℓ < γ and all x, y ∈ K ([?, []efinition 3.1]Hairer14).
An SPDE like (1.3) can then be turned into an equation on Dγ , and any solution U ∈ Dγ will
be mapped to a distribution again via the continuous linear reconstruction operator R : Dγ →
D(Rd) corresponding to the model (Π,Γ), which is characterized by

|(Rf −Πxfx)(φλ
x)| ≤ CΠ,f,Kλ

γ

for all compact K ⊆ Rd, uniformly over all x ∈ K, all test functions φ supported on the ∥ · ∥s
unit ball around zero with ∥ϕ∥Cr ≤ 1, and all λ ∈ (0, 1], where r is as before. This is (part of)
the famous reconstruction theorem, Theorem 3.10 in [Hai14]. We then consider u := RU as a
solution to (1.3).

These SPDEs however often turn out to be ill-posed a priori. For example, consider the
famous KPZ equation (e.g. [Hai14, Equation (1.3)])

(∂t − ∂2
x)u = (∂xu)2 + ξ,

3In [Hai14], there is the additional assumption of the si being relatively prime, but even though this seems
very reasonable, the author of this thesis doesn’t see a necessity to impose that, since everything works in the
more general case.
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where we have a problem when ξ is a distribution of Hölder regularity smaller than −1, like
e.g. space-time white noise in one space dimension is of Hölder regularity just under −3/2, since
the derivative ∂xu is then expected to be of negative regularity as well (just under −1/2 in the
white noise case), but the square (∂xu)2 isn’t well defined for proper distributions of negative
regularity. If we now approximate ξ with a sequence of smooth functions ξϵ, for example via a
mollifier, then the corresponding models (Πϵ,Γϵ)1≥ϵ>0 appropriate for solving the equation will
fail to converge for ϵ → 0, for the exact same reason: because the regularity structure contains
an abstract symbol for e.g. (∂xK ∗ ξ)2 and the evaluation with Πx will then diverge, where K is
the heat kernel for the operator ∂t − ∂2

x.
The way to deal with this in the framework of regularity structures is by adding another

group R continuously acting on T and another grading T = (T̃β)β∈B , where {β ∈ B : β < n}
is finite for all n, such that, at least in the framework developed by Bruned-Hairer-Zambotti
[BHZ19, Sections 4 to 6], R leaves G invariant in the sense that Υ−1ΓΥ ∈ G for all Γ ∈ G and
Υ ∈ R (cf. [BHZ19, Theorem 6.16]), and now satisfies Υτ ∈ T≥α ∩ T≤m(α) and Υϱ− ϱ ∈ T̃>β for
all τ ∈ Tα, ϱ ∈ T̃β and some function m : A→ A. 4

This group R is called renormalization group, and one chooses an appropriate (Υϵ)1≥ϵ>0
such that the renormalized models (Π̄ϵ, Γ̄ϵ) converge for ϵ→ 0, where (cf. [?, []heorem 6.16 and
Equation (6.13)]BHZ16)

Π̄ϵ
x := Πϵ

xΥϵ, Γ̄ϵ
xy := Υ−1

ϵ Γϵ
xyΥϵ.

The limiting model (Π̄, Γ̄) is then used to solve the equation.
To make this work with a renormalization group in the above sense, one might in many

cases first need to extend the regularity structure (A, T,G) to (A, T ex, Gex), where each Tα is a
subspace of T ex

α and G is a subgroup of Gex, just as it was done in great generality in [BHZ19],
see Section 6.4 there for the relation of “reduced” and “extended” regularity structure.

1.4 Universality of words and trees as algebraic combina-
torial objects

1.4.1 The tensor algebra
The universality of the tensor algebra T (V ) = R ⊕

⨁︁∞
n=1 V

•n, written as the space of linear
combinations of words (non-commutative polynomials) built from the alphabet which represents
a linear basis of V (existing due to Zorn’s Lemma, assuming the axiom of choice) together with
the empty word e, is mostly grounded on its non-unital part T≥1(V ) =

⨁︁∞
n=1 V

•n being both the
free associative algebra with the word concatenation product • and the free Zinbiel algebra with
the halfshuffle product ≻. It furthermore constitutes the free Leibniz algebra with the Leibniz
bracket given recursively by [LP93, Lemma (1.3)]

Ji, xK = ix, Jiw, xK = i • Jw, xK− Jw, ixK,

which can be explicitly written as
Jx, yK = r(x) • y,

where r is the Dynkin map discussed in Section 4.2, however we will not be concerned with
Leibniz algebras in this thesis, we only mention that the Leibniz operad is the Koszul dual (see

4If one follows exactly the construction of [BHZ19, Sections 4 to 6], then one gets RTα = Tα However, it
is also possible and seems reasonable to tweak their grading | · |+ [BHZ19, Definition 5.3] a little, such that all
canonical models and their renormalizations are still models, but such that we have (Υ − id)Tα ⊆ T>α for all
Υ ∈ R. This makes the space of all models a little smaller, but it encodes the demand that renormalization of
terms shall happen via adding terms of higher degree.
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e.g. [HP11, Definition 10.5]) of the Zinbiel operad, which is the reason Zinbiel algebras have been
named like that in the first place (Leibniz spelled backwards).

From the free associative algebra (T≥1(V ), •) we may now of course derive by antisymmetriza-
tion a Lie algebra on T≥1(V ) given by the Lie bracket [x, y] := x•y−y •x, and it turns out that
the smallest sub-Lie-Algebra (g(V ), [·, ·]), g(V ) ⊊ T≥1(V ) containing the letters i constitutes
the free Lie algebra over V (see e.g. [Reu93, Sections 0.2 and 1.2]). If we look at the algebra
(T≥1(V ),�), where � is the symmetrization of the halfshuffle ≻, it turns out to be free as a
commutative associative algebra over any homogeneous minimal generating subspace (see Sec-
tion 4.4 and cf. [Reu93, Corollary 5.5, Theorem 6.1 and Section 6.5.1]). We may furthermore
extend both � and • to T (V ) by setting

x� e = e� x = x, x • e = e • x = x

to obtain a free unital commutative associative algebra (T (V ),�) and the free unital associative
algebra (T (V ), •) over V .

We introduce a duality pairing of T (V ) with itself by setting

⟨w, v⟩ = δw,v

for all words w, v. What is now the impressing interplay of the free Zinbiel algebra and the free
associative algebra is that if we form the dual unshuffle coproduct ∆� of the shuffle product
�, we obtain a Hopf algebra (T (V ), •,∆�, α) which is connectedly graded by word length and
is nothing but the universal enveloping algebra of the free Lie algebra g(V ). This in particular
means that ∆� is the due to freeness of the tensor algebra unique homomorphism from T (V ) to
T (V ) ⊗ T (V ) satisfying ∆�i = i ⊗ e + e ⊗ i, i.e. such that the letters are primitive elements.
It furthermore means that the Lie algebra g(V ) is characterized as the set of primitive elements
in T (V ), i.e. the set of all linear combinations of words x such that

∆�x = x⊗ e + e⊗ x.

This unique and fascinating interplay of the two universal algebraic structures (T≥1(V ),≻)
and (T≥1(V ), •) is more than enough motivation from an algebraic combinatorial viewpoint alone
to look at the tensor product of ≻ and •, which is described by the two operations ⪰ and ⪯ (see
Section 4.1.2.1 and Remark 4.2.5) forming a dendriform algebra, and at the antisymmetrization
of ≻, which we will denote by area.

For the latter, thanks to [DIM19, Theorem 2.5], we have another universal property, namely
that for any two letters i, j, the smallest subspace containing both of these letters and be-
ing closed under the area operation does in fact form the free Tortkara algebra over the two-
dimensional space spanned by i, j. It remains a very important to solve and challenging open
problem (Conjecture 4.6.5)whether (A (V ), area), the smallest subspace containing all the let-
ters and being closed under area, is actually always the free Tortkara algebra over V , for any
dimension of V .

Finally, just for completeness, we mention that the symmetrization of the free associative
algebra yields a Jordan algebra (T (V ), jor) (as the anticommutator of an associative algebra is
always a Jordan algebra) and the smallest subspace SJ (V ) containing the letters and being
closed under jor constitutes the free Jordan algebra over V for V two-dimensional, but not for
higher dimension (see e.g. [McC78], cf. also [KM21] and the remarks in [Dzh07]).

1.4.1.1 A note on different naming conventions: Zinbiel/Dendriform vs shuffle

We want to highlight that in the algebraic literature relevant for this thesis, two different naming
conventions have evolved for the categories we, together with some part of the scholars, denote as
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Zinbiel algebras, dendriform algebras and (commutative) tridendriform algebras (cf. the almost
identical “dictionary” given in [FP20, Section 1, Terminology]):

Loday et al, e.g. Foissy-Patras et al, e.g.
[Lod01] [Lod07] [Dzh07] [LV12] [BBM17] [EP15] [FP20] [EP21] [DET20a]
Zinbiel algebra / commutative shuffle algebra
commutative dendriform algebra
dendriform algebra (noncommutative) shuffle algebra
commutative tridendriform algebra commutative quasishuffle algebra
tridendriform algebra (noncommutative) quasishuffle algebra

While (commutative) shuffle algebra and (commutative) quasishuffle algebra denote categories
of algebras coming from certain quadratic binary operads for scholars following the Foissy-Patras
et al convention, for us a (half)shuffle algebra denotes the free Zinbiel algebra (T≥1(V ),≻)
over some vector space V and a quasishuffle algebra (following [Lod07, Section 1.5]5) denotes a
tridendriform algebra of the form (T≥1(A),≼,≽,⋊⋉) built from an associative algebra (A, {·, ·})
with

xi≼ yj = (x ˆ︁� yj) • i, xi≽ yj = (xi ˆ︁� y) • j, xi ⋊⋉ yj = (x ˆ︁� y) • {i, j},
xi ˆ︁� yj = xi≼ yj + xi≽ yj + xi ⋊⋉ yj, x ˆ︁� e = e ˆ︁� x = x

for x, y ∈ T (A) and (i)i∈I denoting a linear basis of A. If {·, ·} is commutative, then x≽y = y≼x
and ˆ︁� is commutative, thus (T≥1(A),≽,⋊⋉) is a commutative tridendriform algebra. Thus, we
denote by commutative quasishuffle algebras all commutative tridendriform algebras of the form
(T≥1(C),≽,⋊⋉) for an arbitrary commutative associative algebra (C, {·, ·}).

This constitutes our main argument for sticking to the Loday et al naming convention for
the binary quadratic operadic algebra categories: To reserve the names (half)shuffle algebra,
quasishuffle algebra and commutative quasishuffle algebra for the objects in the image of the
functors6

V ↦→ (T≥1(V ),≻), (A, {·, ·}) ↦→ (T≥1(A),≼,≽,⋊⋉), (C, {·, ·}) ↦→ (T≥1(C),≽,⋊⋉)

since those functorial images form strict subcategories of what we call Zinbiel algebras, triden-
driform algebras and commutative tridendriform algebras.

1.4.2 Trees and Forests
Labeled non-planar rooted trees appear naturally as a basis of the free pre-Lie algebra (B(V ),↷)
over the vector space V (see [CL01]), where once again a basis (vi)i∈I of V is chosen to serve now
as the set of possible labels i ∈ I of the trees, i.e. V embeds into B(V ) as the span of singleton
nodes (•i)i∈I . As any pre-Lie algebra induces a Lie algebra by antisymmetrization, we obtain in
this case the Lie algebra (B(V ), [·, ·]⋆).

Finally, we form the free unital commutative associative algebra over B(V ), linearly spanned
by commutative polynomials formed from the trees in B(V ), which we call forests, and an empty
forest e, and we denote this algebra by H(V ) with forest product ⊙. We furthermore introduce
a linear duality pairing of H(V ) with itself characterized by

⟨ζ1, ζ2⟩ = δζ1,ζ2

5though we ’mirror’ Loday’s construction and for simplicity define the product with e only for ˆ︁�
6to fully define those functors, one must of course furthermore specify how they lift linear maps, algebra homo-

morphisms and commutative algebra homomorphisms to Zinbiel homomorphisms, tridendriform homomorphisms
and commutative tridendriform homomorphisms
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for all forests ζ1, ζ2. Then, we obtain that there is an associative non-commutative product ⋆
on H(V ) graded by the number of nodes a tree has such that the Hopf algebra (H(V ), ⋆,∆⊙),
where the coproduct ∆⊙ is the dual of ⊙, forms the universal enveloping algebra of (B(V ), [·, ·]⋆),
which in particular means that

[τ1, τ2]⋆ = τ1 ↷ τ2 − τ2 ↷ τ1 = τ1 ⋆ τ2 − τ2 ⋆ τ1

for all τ1, τ2 ∈ B(V ) and that we have that B(V ) consists of all x ∈ H(V ) such that

∆⊙x = x⊗ e + e⊗ x.

This unique product ⋆ is called the Grossman-Larson product [GL89]. The free pre-Lie product
↷ then admits a simple representation in terms of the Grossman-Larson product:

τ1 ↷ τ2 = projB(V )(τ1 ⋆ τ2).

It can be shown that there exists a subspace T ⊊ B(V ), whose choice is highly non-unique, such
that B(V ) is the free Lie algebra over T, and equivalently such that H(V ) is the free associative
algebra over T.

Now, of course we can look at the graded dual Hopf algebra (H(V ),⊙,∆⋆). Here, the Butcher-
Connes-Kreimer coproduct ∆⋆, the dual of the universal enveloping algebra product ⋆, is char-
acterized by multiplicativity with respect to ⊙ and by turning the crafting of a forest ζ onto a
new root •i, which we denote by B+

i (ζ) = ⌊ζ⌋i, into a 1-cocycle, i.e.

∆⋆B
+
i = (id⊗B+

i )∆⋆ + (B+
i ⊗ e).

Now, we obtain the following universality (see [CK98, Theorem 2 of Section 3], [Foi13, The-
orem 3], [HK15, Remark 4.7]): If A is any Hopf algebra with a V -collection of 1-cocycles
Lv : A → A, Lβ1x+β2y = β1Lx + β2Ly, then the unique associative algebra homomorphism
ψ : H(V ) → A with ψB+

v = Lvψ, where B+
vi

:= B+
i , is in fact a Hopf algebra homomorphism.

I.e. (H(V ),⊙,∆⋆, B
+) is an initial object in the category of Hopf algebras with a V -collection

of 1-cocycles.

1.5 Outline
First, a brief disclaimer: The index and the frequently used notation section at the end of this
thesis do not at all claim completeness, they are just there in the hope that they may help the
reader a little with the overview over the zoo of vocabulary and symbols in this thesis.

1.5.1 A rough path perspective on renormalization
While renormalization theory for SPDEs has been well established over the last couple of years,
for SDEs, such a formalism seems to be obsolete at first sight. However, we show that the Itô-
Stratonovich correction can precisely be interpreted as a renormalization of both the branched
rough path as well as the equation in question. The action of the renormalization group on the
rough path is algebraically described as a translation operator on the space of trees and forests.
The effect of the translation on the RDE can then be understood in terms of the pre-Lie product
on vector fields g ▷ h, which is given by the derivation of h in the direction of g.

In order to uniquely define the translation operator Tv for branched rough paths, we introduce
the free pre-Lie algebra structure on trees discovered in [CL01] through Equations (2.7) and (2.8)
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in Subsection 2.3.2.2. The pre-Lie product τ1 ↷ τ2 is calculated combinatorially by summing
up all possibilities of crafting the tree τ1 onto the tree τ2. Any collection of smooth vector fields
(f1, . . . , fn) then induces a canonical map v ↦→ fv from the space of trees to the space Vect(Rd)
of smooth vector fields on Rd via

fτ1↷τ2 := fτ1 ▷ fτ2 , f•i
:= fi,

where ▷ is the pre-Lie product on Vect(Rd) given in coordinates as

(gi∂i) ▷ (hj∂j) := (gi∂ih
j)∂j .

As pointed out by Manchon in [Man11, Section 3.2], this map from trees to vector fields has
already been studied in 1857 by Cayley [Cay57]. As one of our main results (Theorem 2.5.10),
we show how the pre-Lie constructions make it possible to switch between the RDE with respect
to the translated/renormalized rough path and the translated/renormalized RDE with respect
to the original rough path:

dY = f (Y ) d (TvX) ⇐⇒ dY = f (Y ) dX + fv(Y )dt.

We furthermore investigate in Section 2.6 how our formalism stands in a one-to-one correspon-
dence with the algebraic renormalization theory for regularity structures due to Bruned–Hairer–
Zambotti [BHZ19] applied to a suitable regularity structure for (renormalization of) branched
RDEs and a suitable class of models encoding branched rough paths.

1.5.2 Signatures of paths transformed by polynomial maps
The objective in starting this project was the following question asked by Bernd Sturmfels towards
the author of this thesis:

Can one express the signature of the path p(X), where p is a polynomial map, in terms of the
signature of the original path X, and if yes, how?

The answer is indeed positive, and we introduce an algebra homomorphism Mp that only
depends on p with p(0) = 0 such that the relation

⟨σ(X),Mpw⟩ = ⟨σ(p(X)), w⟩

holds (Theorem 3.1.2). We only show this for piecewise C1-paths, but there is of course a
generalisation to all paths for which the signature is uniquely well defined if one uses Young
integral calculus.

We show several properties of the map Mp in Proposition 3.3.2, e.g. that it is compatible
with composition of polynomial maps, i.e.

Mq◦p = MpMq.

Furthermore, we discuss in Section 3.3.1 how Mp can be nicely introduced as a homomorphism
of Zinbiel algebras: Mp is indeed characterized by

Mp(i) = ϕ(pi), Mp(wi) = Mp(w)≻ ϕ(pi),

where ϕ is the canonical algebra homomorphism that turns polynomials on Rd into shuffle poly-
nomials in T (Rd).
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1.5.3 Areas of areas generate the shuffle algebra
This subsection is based on an extended abstract [Pre21] based on a talk given at the Oberwolfach
workshop New directions in Rough Path Theory.

We are concerned with the signed area, or Levy area, between two components of a path,
which comes with very interesting properties: It is a rotation invariant in two dimensions, it is
iterable, meaning all kinds of bracketings like

Area(Area(X1,X2),X1),Area(Area(Area(X1,X2),X1),X1)),

Area(Area(X1,X2),Area(X2,Area(X1,X2))), . . .

can be computed. Area behaves well with respect to discretization and in the stochastic setting,
it preserves the martingale property. Its analytic computation is also very simple:

Let Area(X1,X2)t denote two times the signed area enclosed by the two-dimensional path
(X1,X2) up to time t and the straight line connecting (X1(t),X2(t)) with (X1(0),X2(0)). We have

Area(X1,X2)t =
∫︂ t

0
(X1

s − X1
0) dX2

s −
∫︂ t

0
(X2

s − X2
0) dX1

s .

Thus, we get

Area(Xa,Xb)t = Xarea(a,b)
t ,

where we define the purely algebraic area operation as area(a, b) := a≻ b− b≻ a, which will be
the object of our study.

area is obviously anticommutative, but neither associative,

area(area(1, 2), 3) = 123− 132 + 213− 231− 312 + 321

̸= 123− 132− 213 + 231− 312 + 321 = area(1, area(2, 3))

nor does it satisfy the Jacobi identity,

area(1, area(2, 3)) + area(2, area(3, 1)) + area(3, area(1, 2))
= −123 + 132 + 213− 231− 312 + 321 ̸= 0.

It does however satisfy the so-called Tortkara identity introduced in [Dzh07]:

area(area(a, b), area(c, d)) + area(area(a, d), area(c, b))
= area(vol(a, b, c), d) + area(vol(a, d, c), b),

where
vol(a, b, c) := area(area(a, b), c) + area(area(b, c), a) + area(area(c, a), b).

vol corresponds to the signed volume: Volume(Xa,Xb,Xc) = ⟨σ(X), vol(a, b, c)⟩ is six times the
signed volume enclosed by the three-dimensional path (Xa,Xb,Xc), where Xz

t = ⟨σ(X↾[0,t]), z⟩
([DR19, Section 3.1, Equation (4), Definition 3.27, Theorem 3.28]).

As our main result, Corollary 4.4.8, we show that the area algebra A(Rd) spanned by area
bracketings (“areas of areas”) starting from the letters {1, . . . , d} is itself a generator of the shuffle
algebra (T (Rd),�) This is a corollary of the following more general fact (Lemma 4.4.2):
Theorem. Let Xn ⊆ Tn(Rd) and X =

⋃︁
n Xn. Then,
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For all n ≥ 1, for all nonzero L ∈ gn(Rd) there is an x ∈ Xn such that ⟨x, L⟩ ̸= 0
if and only if

X shuffle generates the shuffle algebra T (Rd).

Referring back to signatures, our result means that knowledge of the values of the full incre-
ments and of all areas of areas computed from a given path is equivalent to the full signature.

We furthermore look at a left bracketing of area, i.e.
←−−area(i1 . . . in) := area(. . . area(area(area(i1, i2), i3), i4), . . . , in)

Conjecture. In [DIM19, Section 5] and in [Rei19, Section 3.2, Theorem 31], it was proven for
d = 2 that a linear basis of A is given by the union of the letters and (←−−areaijw)(i,j,w), where w
runs over all words in d letters and (i, j) over all letters such that i < j.

The question whether this holds true for d ≥ 3, too, remains an open problem.
While we didn’t manage so far to make progress on this conjecture, through trying to prove

it we came along properties of the area left-bracketing which highlight how little is understood
about the algebraic operation so far, e.g. the following result, Proposition 4.6.10, which seems
quite unexpected at first: We have

←−−area(vx) =←−−area(v)←−−area(x)

for any T≥1(Rd) and any Lie polynomial x without a first-order term.
Further open problems include understanding the Tortkara identity in geometric terms as

well as finding free, i.e. polynomially independent, shuffle generating set consisting of areas of
areas, which would allow for a non-redundant storing of the information of the signature in area
terms, and, due to the fact that areas of areas of piecewise linear paths are again piecewise linear,
also for a very efficient numerical computation of the truncated signature.



Chapter 2

A rough path perspective on
renormalization

This chapter is based on [BCFP19], which was published under the Creative Commons License
CC-BY-4.0, https://creativecommons.org/licenses/by/4.0/. Indication of changes, as re-
quired by the license: Changes and additions to the material have been made by the author of
this thesis towards the version presented in this chapter.

2.1 Introduction

2.1.1 Rough paths and regularity structures
The theory of rough paths, initiated by Lyons through the series of papers [Lyo94], [Lyo95],
[Lyo98], deals with controlled differential equations of the form

dYt = f0(Yt)dt+
d∑︂

i=1
fi (Yt) dXi

t Y0 = y0 ∈ Re .

with (X1, ..., Xd) : [0, T ]→ Rd, of of low, say α-Hölder, regularity for 0 < α ≤ 1. As may be seen
by formal Picard iteration, given a collection f0, f1, ..., fd of nice vector fields on Re, the solution
can be expanded in terms of certain integrals. Assuming validity of the chain-rule, and writing
X0(t) ≡ t for notational convenience, these are just iterated integrals of the form

∫︁
dXi1 · · · dXin

with integration over n-dimensional simplex. In geometric rough path theory one postulates the
existence of such integrals, for sufficiently many words w = (i1, . . . , in), namely |w| = n ≤ [1/α],
such as to regain analytic control: the collection of resulting objects

⟨X, w⟩ =
∫︂
· · ·
∫︂
dXi1 . . . dXin (integration over s < t1 < · · · < tn < t, for all 0 ≤ s < t ≤ T )

subject to suitable analytic and algebraic constraints (in particular, Chen’s relation, which de-
scribes the recentering s → s̃ ) is then known as a (level-n) weakly geometric rough path, in-
troduced in [Lyo98, Section 2.1 and Definition 2.3.1] (as geometric p-multiplicative functionals).
For the reader’s convenience, we give some precise recalls, along the lines of Hairer–Kelly [HK15,
Section 1], in Section 2.1.2 below. Without assuming a chain-rule (think: Itô), iterated integrals

15
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of the form
∫︁
XiXjdXk appear in the expansion, the resulting objects are then naturally indexed

by trees, for example

⟨X, τ⟩ =
∫︂
XiXjdXk with τ = [•i•j ]•k

≡
k

ji

.

The collection of all such objects, again for sufficiently many trees, |τ | = #nodes ≤ [1/α] and
subject to algebraic and analytic constraints, form what is known as a branched rough path
([Gub10, Definition 7.2] [HK15, Definition 1.6 and Definition 2.13]). Here again, we refer to
Section 2.1.2 for a precise definition and further recalls.

A basic result - known as the extension theorem ([Lyo98, Theorem 2.2.1][Gub10, Theo-
rem 7.3]) - asserts that all “higher” iterated integrals, n-fold with n > [1/α], are automatically
well-defined, with validity of all algebraic and analytic constraints in the extended setting.1 Solv-
ing differential equations driven by such rough paths can then be achieved, following [Gub04], see
also [FH14, Sections 4, 7, 8], by formulating a fixed point problem in a space of controlled rough
paths (first introduced for weakly geometric rough paths in [Gub04, Definition 1]) , essentially
a (linear) space of good integrands for rough integration (mind that rough path spaces are, in
contrast, fundamentally non-linear due to the aforementioned algebraic constraints). Given a
rough differential equation (RDE) of the form

dY = f0(Y )dt+ f (Y ) dX

it is interesting to see the effect on Y induced by higher-order perturbations (“translations”)
of the driving rough path X. For instance, one can use Itô integration to lift a d-dimensional
Brownian motion (B1, ..., Bd) to a (level-2) random rough path, X = BItô (ω) of regularity
α ∈ (1/3, 1/2), in which case the above RDE corresponds to the classical Itô SDE

dYt = f0(Yt)dt+
d∑︂

i=1
fi (Yt) dBi

t , Y0 = y0 ∈ Re .

However, we may perturb BItô =
(︁
B,BItô)︁ via BItô

s,t ↦→ BItô
s,t + 1

2I (t− s) =: BStrat
s,t , without

touching the underlying Brownian path B. The above RDE then becomes a Stratonovich SDE.
On the level of the original (Itô)-equation, the effect of this perturbation is a modified drift vector
field,

f0 ⇝ f0 + 1
2

d∑︂
i=1
∇fifi ,

famously known as Itô-Stratonovich correction. Examples from physics (e.g. Brownian motion
in a magnetic field) suggest second-order perturbation of the form BStrat

s,t ↦→ BStrat
s,t +a (t− s), for

some a ∈ so (d), the SDE is then affected by a drift correction of the form

f0 ⇝ f0 +
∑︂
i,j

aij [fi, fj ] .

In the context of classical SDEs, area corrections are also discussed in [IW89, Chapter VI, Sec-
tion 7], and carefully designed twisted Wong–Zakai type approximations led Sussmann in[Sus91,
Sections 5 and 6] to drift corrections involving higher iterated Lie brackets. This was reconciled

1This entire ensemble of iterated integrals is called the signature or the fully lifted rough path.
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with geometric rough path theory in [FO09], and provides a nice example where (Brownian)
rough paths (with γ = 1

2− regularity) need to be studied in the entire scale of different rough
path topologies indexed by γ ∈ (0, 1/2).

As we shall see, all these examples are but the tip of an iceberg. It will also be seen that
there is a substantial difference between the weakly geometric rough path case and the generality
aimed for in this chapter.

We finally note that tampering with “higher levels” of the lifted noise also affects the structure
of stochastic partial differential equations: this is not only omnipresent in the case of singular
SPDEs, see e.g. [Hai14], [GIP15], but very much in every SPDE with rough path noise as re-
marked e.g. in [CFO11, Theorem 2].

From rough paths to regularity structures. The theory of regularity structures intro-
duced by Hairer in [Hai14] extends rough path theory and then provides a remarkable framework
to analyse (singular) semi-linear stochastic partial differential equations, e.g. of the form

(∂t −∆)u = f (u,Du) + g (u) ξ (t, x, ω)

with (d+ 1)-dimensional space-time white noise. The demarche is similar as above: noise is lifted
to a model, whose algebraic properties (especially with regard to recentering) are formulated with
the aid of the structure group. Given an (abstract) model, a fixed point problem is solved and
gives a solution in a (linear) space of modelled distributions. The abstract solution can then
be mapped (“reconstructed”) into an actual distribution (a.k.a generalized function). In fact,
one has the rather precise correspondences as follows (see [FH14, Sections 13.2.2 and 13.3.2] for
explicit details in the level-2 setting):

rough path ←→ model
Chen’s relation ←→ structure group
controlled rough path ←→ modelled distribution
rough integration ←→ reconstruction map

Table 2.1: Basic correspondences: rough paths ←→ regularity structures

Furthermore, one has similar results concerning continuity properties of the solution map as a
function of the enhanced noise:

continuity of solution in (rough path ←→ model) topology

Unfortunately mollified lifted noise - in infinite dimensions - in general does not converge (as a
model), hence renormalization plays a fundamental role in regularity structures. The algebraic
formalism of how to conduct this renormalization then relies on heavy Hopf algebraic consider-
ations (originally [Hai14, Sections 8.1, 8.3, 9.1 and 9.2]), pushed to great generality in [BHZ19],
see also [Hai16, Section 2] for a summary. Our investigation was driven by two questions:

(1) Are there meaningful (finite-dimensional) examples from stochastics which require (infinite)
renormalization?

(2) Do we have algebraic structures in rough path theory comparable with those seen in regularity
structures?
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To be more specific, with regard to (1), consider the situation of a differential equation
driven by some finite-dimensional Brownian (or more general Gaussian) noise, mollified at scale
ε, followed by the question if the resulting (random) ODE solutions converge as ε → 0. As
remarked explicitly in [FH14, at the end of Section 15.4], this is very often the case (with
concrete results given in [FH14, Section 10]), with the potential caveat of area (and higher
order) anomalies (see [FO09], [FGL15], ...), leading to a more involved description (sometimes
called finite renormalization) of the limit. We emphasize, however, that this is not always
the case; there are perfectly meaningful (finite-dimensional) situations which require (infinite)
renormalization, which we sketch in Section 2.4.3 below together with precise references. We
further highlight that a natural example of geometric rough path (over R2) with a logarithmically
diverging area term requiring (infinite) renormalization appears in Hairer’s solution of the KPZ
equation, see [Hai13, Section 7]. This situation is characteristic of singular SPDEs, in which the
procedure described above typically leads to plain divergence, cured by “subtracting infinities”,
a.k.a. infinite renormalization.

Much effort in this work is then devoted to question (2): In [BHZ19], the algebraic formalism
in regularity structures relies crucially on two Hopf algebras, T+ and T− [BHZ19, Section 5.5]
(which are furthermore in “cointeraction”, see [BHZ19, Theorem 5.37]). The first one helps to
construct the structure group which, in turn, provides the recentering (as it is called in [BHZ19,
Section 1], while in [Hai16, Section 3] or in the talk [Zam16] the term “positive renormalization”
appears) and hence constitutes an abstract form of Chen’s relation in rough path theory. In this
sense, T+ was always present in rough path theory, the point being enforced in the model case of
branched rough paths (see [Gub10],[HK15]) where T+ is effectively given by the Connes-Kreimer
Hopf algebra.

Question (2) is then reduced to the question if T−, built to carry out the actual renormalization
of models, and subsequently SPDEs, (“negative renormalization” in the language of [Hai16,
Section 3] and [Zam16]), has any correspondence in rough path theory. Our answer is again
affirmative and we establish the precise relation:

translation of rough paths ←→ renormalization of models

At last, during the course of writing the paper behind this chapter, the authors of [BCFP19]
realized that we have been touching on a third important point, whose importance seems to
transcend the rough path setting in which it is discussed.

(3) How does one obtain from the renormalized model, in some algebraic and automated fash-
ion, the renormalized equation?

It is indeed the algebraic approach to “translation of rough paths” (i.e. renormalization of a
branched rough path model) that indicated an important role played by pre-Lie structures, which
first appear in Section 2.3.2 to construct the translation operator (on forest series) and then to
characterize its dual. These considerations help answer the (not very precise) question of what
pre-Lie structures (after all, a well-known tool in the renormalization theory, see e.g. [Man11,
Section 2.4] and the references therein) have to do with rough paths and regularity structures.
From a regularity structures perspective, a remarkable consequence is that this allows to un-
derstand directly the action of the renormalization group on the (to-be-renormalized) equation
at hand, thus providing an answer to question (3). Indeed, by exploiting the pre-Lie structure
of the space of trees, we obtain a direct conversion formula for the RDE driven by a translated
branched rough path; see Section 2.5.2, Theorem 2.5.10, and Remark 2.5.14. The analogous
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statement in regularity structures is an explicit form of an arbitrary renormalised SPDE, a result
which was recently established as [BCCH21, Theorem 3.25].
Several remarks are in order.

• We first develop the algebraic renormalization theory for rough paths in its own right,
analytic considerations then take place in Section 2.5. The link to regularity structures
and its renormalization theory is only made in Section 2.6.

• While pre-Lie homomorphisms play a crucial role in the construction of translation maps,
we point out that in certain situations the fine-details of pre-Lie structures are not visible;
see the final point of Theorem 2.5.1, as well as Remarks 2.5.5 and 2.6.11.

• In Section 2.4.3 we present several examples, based on finite- (and even one-) dimensional
Brownian motion, which do require genuine renormalization. Another interesting type
of rough path renormalization, aiming at fractional Brownian (recall divergence of Lévy
area for Hurst parameter H ≤ 1/4 from [CQ02, Theorem 2]) based on Fourier normal
ordering, was proposed by Unterberger in [Unt13]. That said, his methods and aims are
quite different from those considered in this chapter and/or those from Hairer’s regularity
structures.

• The existence of a finite-dimensional renormalization group is much related to the station-
arity of the (lifted) noise, see [Hai14], [CH18], and the stationarity assumption in [BHZ19,
Theorem 6.18]. In the rough path context, this amounts to saying that a random (branched)
rough path X = X (ω), with values in a (truncated) Butcher (hence finite-dimensional Lie)
group G, actually has independent increments with respect to the Grossmann-Larson prod-
uct ⋆ (dual to the Connes-Kreimer coproduct ∆⋆). In other words, X is a (continuous)
G-valued Lévy process. This yields a close connection to the works [FS17, Section 3] and
[Che18] devoted to the study of Lévy rough paths; in Section 2.4.2 we shall see how Lévy
triplets (or rather tuples in the absence of jumps) behave under renormalization.

2.1.2 Weakly geometric and non-geometric rough paths
In this subsection, we briefly recall the notions of weakly geometric and branched rough paths;
see [FV10], [Gub10] and [HK15] for further details. See also Sections 2.2.1 and 2.3.1 for further
details on the algebraic structures involved.

Weakly geometric rough paths. We follow [HK15, Section 1.1]. Consider a path X :
[0, T ] → Rd. A (weakly geometric) rough path over X is a map X : [0, T ]2 → T ((Rd)), where
T ((Rd)) =

∏︁∞
k=0(Rd)⊗k is the space of “tensor series” over Rd, which should be thought of as

the iterated integrals of X. Equipping Rd with an inner product, we can identify T ((Rd)) with
the algebraic dual of the tensor algebra

T (Rd) = R⊕ Rd ⊕ (Rd)⊗2 ⊕ . . . .

One should think of the components of X as formally being given by [HK15, Equation (1.3)]

⟨Xs,t, i1 · · · in⟩ :=
∫︂ t

s

· · ·
∫︂ t2

s

dXi1
t1
. . . dXin

tn
, (2.1)

for i1, . . . , in ∈ {1, . . . , d}, where Xi
t−Xi

s = ⟨Xst, i⟩ and where we use the shorthand i1 · · · in =
i1•· · ·•in with • denoting the tensor product in T (Rd). We emphasize that, as it is also noted in
[HK15, Section 1.1], unless n = 1, the definition (2.1) is, in general, only formal and one should
think of the rough path X as defining the RHS.
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Observe that if X is smooth and (2.1) is used to define X, then the so-called shuffle identity
holds [HK15, Equation (1.4)]

⟨Xt, i1 · · · in⟩⟨Xt, j1 · · · jm⟩ = ⟨Xt, i1 · · · in � j1 · · · jm⟩ , for all i1 · · · in, j1 · · · jm ∈ T (Rd) ,
(2.2)

where � denotes the commutative associative shuffle product [Reu93, Section 1.4]. While we do
not give the definition of � here or prove this identity, we remark that it is a direct consequence
of integration by parts. Another important algebraic identity which holds in this case is Chen’s
relation

Xs,t = Xs,u •Xu,t , for all s, t, u ∈ [0, T ] ,
which can be shown by an application of Fubini’s theorem.

The concept of a (weakly geometric) rough path should be thought of as a generalisation of
these identities to paths of lower regularity.

Definition 2.1.1 ([HK15, Definition 1.2]). Let γ ∈ (0, 1]. A γ-Hölder weakly geometric rough
path is a map X : [0, T ]2 → T ((Rd)) satisfying

i) ⟨Xst, x� y⟩ = ⟨Xst, x⟩⟨Xst, y⟩, for all x, y ∈ T (Rd),

ii) Xst = Xsu •Xut for all s, t, u ∈ [0, T ],

iii) sup
s ̸=t

|⟨Xst, i1 · · · in⟩|
|t− s|γn

<∞, for all n ≥ 1 and i1, . . . , in ∈ {1, . . . , d}.

Branched rough paths. One is often interested in paths X for which natural definitions
of “iterated integrals” do not satisfy classical integration by parts and thus do not constitute
weakly geometric rough paths, e.g., integrals defined in the sense of Itô for a semi-martingale
X. Branched rough paths are a generalisation of weakly geometric rough paths which allows for
violation of the shuffle identity (2.2) and thus of the usual rules of calculus. This is achieved
by substituting the space T ((Rd)) with a larger (Hopf) algebra H∗ in which natural generalisa-
tions of properties i), ii), and iii) are required to hold. The Hopf algebra H∗ is known as the
Grossman–Larson algebra of series of forests, and is the algebraic dual of the Connes–Kreimer
Hopf algebra [Kre98, Section 3][CK98, Section 2 and Section 3] consisting of polynomials of
rooted trees with nodes decorated by the set {1, . . . , d}.

Denoting by ⊙ the (commutative) polynomial product on H and by ⋆ the (non-commutative)
Grossman–Larson product on H∗, we have the following analogue of Definition 2.1.1.

Definition 2.1.2 ([HK15, Definition 1.6]). Let γ ∈ (0, 1]. A γ-Hölder branched rough path is a
map X : [0, T ]2 → H∗ satisfying

a) ⟨Xst, τ1 ⊙ τ2⟩ = ⟨Xst, τ1⟩⟨Xst, τ2⟩ for all τ1, τ2 ∈ H,

b) Xst = Xsu ⋆Xut for all s, t, u ∈ [0, T ],

c) sup
s ̸=t

|⟨Xst, τ⟩|
|t− s|γ|τ | <∞ for every forest τ ∈ H, where |τ | denotes the number of nodes in τ .

Here we set ⟨Xs,t, •i⟩ := Xi
s,t and then think of the components of X given by the formal

recursion
⟨Xs,t, [τ1 ⊙ . . .⊙ τn]•i

⟩ =
∫︂ t

s

⟨Xs,u, τ1⟩ . . . ⟨Xs,u, τn⟩dXi
u (2.3)

for trees τ1, . . . , τn ∈ H and i ∈ {1, . . . , d}, where [τ1 ⊙ . . . ⊙ τn]•i
denotes the tree formed by

grafting the trees τ1, . . . , τn onto a single root with label i. If X is smooth and one uses (2.3) to
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define X, then, as before, points a) and b) are direct consequences of integration by parts and
Fubini’s theorem respectively.

Equipping T ((Rd)) with the tensor Hopf algebra structure, there is a canonical graded em-
bedding of Hopf algebras T ((Rd)) ↪→ H∗. Points a), b), and c) are therefore generalisations of
points i), ii), and iii), hence every weakly geometric rough path constitutes a branched rough
path. We emphasize however that this embedding is strict and a) is more general than i), which
allows a general branched rough path X to violate classical integration by parts. For example,
if X is defined via (2.3) using Itô integrals for a semi-martingale X, then X is an example of a
γ-Hölder branched (but in general not weakly geometric!) rough path for any γ ∈ (0, 1

2 ).

2.1.3 Translation of paths
Consider a d-dimensional path Xt, written with respect to an orthonormal basis e1, . . . , ed of Rd,

Xt =
d∑︂

i=1
Xi

tei.

We are interested in constant speed perturbations, of the form

TvXt := Xt + tv, with v =
d∑︂

i=1
viei ∈ Rd.

In coordinates, (TvXt)i = Xi
t + tvi for i = 1, . . . , d, i.e,

⟨TvX, ei⟩ = ⟨Xt, ei⟩+ ⟨tv, ei⟩ .

Consider now an orthonormal basis e0, e1, . . . , ed of R1+d, and consider the R1+d-valued “time-
space” path

X̄t = Xt +X0
t e0 =

d∑︂
i=0

Xi
tei

with scalar-valued X0
t ≡ t. We can now write

TvX̄t = X̄t + tv = Xt +X0
t (e0 + v)

which identifies Tv as linear map on R1+d, which maps e0 ↦→ e0 + v, and ei ↦→ ei for i = 1, . . . , d.
We then can (and will) also look at general endomorphisms of the vector space R1+d, which we
still write in the form

ej ↦→ ej + vj , j = 0, . . . , d

vj =
d∑︂

i=0
vi

jei ∈ R1+d.

(The initially discussed case corresponds to (v0, v1, . . . , vd) = (v0, 0, . . . , 0), with ⟨v0, e0⟩ = 0, and
much of the sequel, will take advantage of this additional structure.)

We shall be interested to understand how such perturbations propagate to higher-level it-
erated integrals, whenever X has sufficient structure to make this meaningful. For instance, if
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X = B(ω), a d-dimensional Brownian motion, an object of interest would be, with repeated
(Stratonovich) integration over {(r, s, t) : 0 ≤ r ≤ s ≤ t ≤ T},

(TvB)ijk
0,T :=

∫︂
◦(dBi + vi dr) ◦ (dBj + vj ds) ◦ (dBk + vk dt) = Bijk

0,T + ...

where the omitted terms (dots) can be spelled out (algebraically) in terms of contractions of
v (resp. tensor-powers of v) and iterated integrals of (1 + d)-dimensional time-space Brownian
motion “(t, B)”. (Observe that we just gave a dual description of this perturbation, as seen on
the third level, while the initial perturbation took place at the first level: v is a vector here.)

There is interest in higher-level perturbations. In particular, given a 2-tensor v =
∑︁d

i,j=1 v
ijei,j ,

we can consider the level-2-perturbation with no effect on the first level, i.e., (TvB)i
t ≡ Bi

t, while
for all i, j = 1, ..., d,

(TvB)ij
t = Bij

t + vij t

For instance, writing BI;w for iterated Itô integrals, in contrast to Bw defined by iterated
Stratonovich integration, we have with v := 1

2I
d where (Id)ij = δij , i.e., the identity matrix,

(TvB
I)ij

t = Bij
t .

This is nothing but a restatement of the familiar formula
∫︁ t

0 B
idBj + 1

2δ
ijt =

∫︁ t

0 B
i ◦ dBj . It is a

non-trivial exercise to understand the Itô-Stratonovich correction at the level of higher iterated
integrals, cf. [Ben89, Proposition 1], and a “branched” version thereof discussed in Section 2.4.1
below. Further examples where such translations serve as a “renormalisation” are discussed in
Section 2.4.3, notably the case B̄ij = (TaB)ij

t with an anti-symmetric 2-tensor a = (aij) which
arises in the study of Brownian particles in a magnetic field.

It will be important for us to understand (explicitly) how to formulate (constant speed,
higher) order translations, an analytic operation on rough paths, algebraically and “point-wise”
terms of the time-space rough path.

2.1.4 Organization of the chapter
This chapter is organized as follows. In Section 2.2, we first discuss renormalization/translation in
the by now well-established setting of weakly geometric rough paths. The algebraic background
is found for instance in [Reu93, Chapter 0 to 3]. We then, in Section 2.3, move to branched
rough paths [Gub10, Definition 7.2], in the notation and formalism from Hairer-Kelly [HK15],
and in particular introduce the relevant pre-Lie structures. In Section 2.4 we illustrate the use
of the (branched) translation operator (additional examples were already mentioned in Section
2.4.3), while in Section 2.5 we describe the analytic and algebraic effects of such translations on
rough paths and associated RDEs. Lastly, Section 2.6 is devoted to the systematic comparison
of the translation operator and the “negative renormalization” introduced in [BHZ19].
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2.2 Translation of weakly geometric rough paths
We review the algebraic setup for weakly geometric rough paths, as enhancements of X =
(X0, X1, ..., Xd), a signal with values in V = R1+d. Recall the natural state-space of such rough
paths is T ((V )), a space of tensor series (resp. a suitable truncation thereof related to the reg-
ularity of X). Typically Ẋ ≡ (ξ0, ξ1, ..., ξd) models noise. Eventually, we will be interested in
X0(t) = t, so that X is a time-space (rough) path, though this plays little role in this section.

2.2.1 Preliminaries for tensor series
We first establish the notation and conventions used throughout the chapter. Most algebraic
aspects used in this section may be found in [Reu93, Chapter 0 to 3] and [FV10, Chapter 7].

Throughout Section 2.2 we let {0, 1, . . . , d} be a basis for R1+d. Consider the vector space of
formal tensor series over R1+d

T ((R1+d)) =
∞∏︂

k=0
(R1+d)⊗k

(with the usual convention (R1+d)⊗0 = R), as well as the vector space of polynomials over R1+d

T (R1+d) =
∞⨁︂

k=0
(R1+d)⊗k.

Note that T (R1+d) and T ((R1+d)) can equivalently be considered as the vector space of words
and non-commutative series respectively in 1 + d indeterminates.

Recall that T ((R1+d)) can be equipped with a Hopf-type2 algebra structure

(T ((R1+d)), •,∆�, α)

with tensor (concatenation) product •, coproduct ∆� which is dual to the shuffle product � on
T (R1+d), and antipode α. Recall that ∆� is explicitly given as the unique continuous3 algebra
homomorphism such that

∆� : T ((R1+d))→ T (R1+d)⊗T (R1+d)
∆� : v ↦→ v ⊗ 1 + 1⊗ v, for all v ∈ R1+d.

We shall often refer to elements i1 • . . . • ik as words consisting of the letters i1, . . . , ik ∈
{0, . . . , d}, and shall write i1 · · · ik = i1 • . . . • ik. We likewise denote by

(T (R1+d),�,∆•, α̃)

the shuffle Hopf algebra. Recall that by identifying R1+d with its dual through the basis
{0, . . . , d}, there is a natural duality between T (R1+d) and T ((R1+d)) in which � is dual to
∆�, and • is dual to ∆•.

We letG(R1+d) and g((Rd+1)) denote the set of group-like and primitive elements of T ((R1+d))
respectively. Recall that g((Rd+1)) is precisely the space of Lie series over R1+d, and that

G(R1+d) = exp•(g((Rd+1))).
2The structure here is not exactly of a Hopf algebra since ∆� does not map T ((R1+d)) into T ((R1+d))⊗2, but

rather into the complete tensor product T (R1+d)⊗2 ≃
∏︁∞

k,m=0(R1+d)⊗k ⊗ (R1+d)⊗m, see [Reu93, Section 1.4].
3We equip henceforth T ((R1+d)) and T (R1+d)⊗T (R1+d) with the product topology.
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For any integer N ≥ 0, we denote by TN (R1+d) the truncated algebra obtained as the
quotient of T ((R1+d)) by the ideal consisting of all series with no words of length less than N
(we keep in mind that the tensor product is always in place on TN (R1+d)). Similarly we let
GN (R1+d) ⊂ TN (Rd) and g≤N (Rd+1) ⊂ TN (R1+d) denote the step-N free nilpotent Lie group
and Lie algebra over R1+d respectively, constructed in analogous ways.

Finally, we identify Rd with the subspace of R1+d with basis {1, . . . , d}. From this identifi-
cation, we canonically treat all objects discussed above built from Rd as subsets of their coun-
terparts built from R1+d. For example, we treat the algebra T ((Rd)) and Lie algebra g≤N (Rd)
as a subalgebra of T ((R1+d)) and a Lie subalgebra of g≤N (Rd+1) respectively.

2.2.2 Translation of tensor series
The idea for the proof of the following Lemma was given by Mateusz Michałek (back then MPI
MIS Leipzig, now Universität Konstanz) in an E-Mail to the author of this thesis from September
18th, 2018. Michałek’s E-Mail contained the full argumentation of the final paragraph of the
proof, starting from the fact that an algebra endomorphism of T ((R1+d)) must map an element
with lowest degree k to an element with lowest degree not smaller than k.

Lemma 2.2.1. Let M1,M2 : T ((R1+d))→ T ((R1+d)) be algebra homomorphisms with M1↾T (R1+d) =
M2↾T (R1+d). Then M1 = M2.

Proof. We may assume that M1e = M2e = e, because otherwise the statement is trivial.
Let deg(v) ∈ N0 denote the first nonzero degree of an element v ∈ T ((R1+d)). Let M :

T ((R1+d))→ T ((R1+d)) be an algebra homomorphism with Me = e.
First of all, deg(Mi) ≥ 1 for all i ∈ {1, . . . , 1 + d}. Otherwise, if a0 denotes the zeroth

component of Mi, i− a0e would have an inverse b ∈ T ((Rd)), i.e. (i− a0e) • b = e and thus

(Mi− a0e) •Mb = e.

But deg(Mi − a0e) ≥ 1, and thus Mi − a0e does not have an inverse, which is the desired
contradiction.

As a consequence, deg(Mu) ≥ n for any non-zero homogeneous element of degree n.
Observe that if v ∈ T ((R1+d)) with deg(v) = n, then, for some m ∈ N, there are homogeneous

elements u1, . . . , um ∈ T (R1+d) of degree n and v1, . . . , vm ∈ T ((R1+d)) with deg(v1) = · · · =
deg(vm) = 0 such that

v =
m∑︂

i=1
ui • vi.

Since deg(Mui) ≥ n, we have deg(M(ui) •M(vi)) ≥ n and thus deg(Mv) ≥ n.
Finally, assume there is x ∈ T ((R1+d)) such thatM1x ̸= M2x. Put k := deg(M1x−M2x) <∞

and let xk denote the canonical projection of x onto T≤k(R1+d). By assumption, M1xk = M2xk,
and thus M1x−M2x = M1(x−xk)−M2(x−xk). But deg(x−xk) > k and thus deg(M1x−M2x) >
k, which is again a contradition.

Note that the argument of Lemma 2.2.1 also works for algebra homomorphisms M1,M2 :
T ((R1+d))→ T ((R1+d))⊗ T ((R1+d)).

Recall that, by the universal property of T (R1+d) any linear map M : R1+d → T ((R1+d))
extends uniquely to a algebra homomorphism M : T (R1+d) → T ((R1+d)), and, if M(i) has no
component of order zero (i.e., ⟨M(i), e⟩ = 0 for all i ∈ {0, . . . , d}, we may put M(

∑︁
w aww) :=∑︁

w awMw for any
∑︁

w aww ∈ T ((R1+d)), which constitutes an extension of M to an algebra
homomorphism on T ((R1+d)) and is thus the unique one through Lemma 2.2.1.



2.2. TRANSLATION OF WEAKLY GEOMETRIC ROUGH PATHS 25

Definition 2.2.2. For a collection of Lie series v = (v0, . . . , vd) ⊂ g((Rd+1)), define Tv :
T ((R1+d))→ T ((R1+d)) as the unique extension to a algebra homomorphism of the linear map

Tv : R1+d → g((Rd+1)) ⊂ T ((R1+d))
Tv : i ↦→ i + vi, for all i ∈ {0, . . . , d}.

In the sequel we shall often be concerned with the case that vi = 0 for i = 1, . . . , d and v0
takes a special form. We shall make precise whenever such a condition is in place by writing, for
example, v = v0 ∈ g≤N (Rd).
Remark 2.2.3. We observe the following immediate properties of Tv:

1. Since Tv is a continuous algebra homomorphism which preserves the Lie algebra g((Rd+1)),
it holds that Tv maps G(R1+d) into G(R1+d);

2. Tv ◦ Tu = Tv+Tv(u), where we write Tv(u) := (Tv(u0), . . . , Tv(ud)). Indeed,

(Tv ◦ Tu)(i) = Tv(i + ui) = i + vi + Tv(ui)

for all i = 0, . . . , d, and since Tv ◦Tu is a continuous algebra homomorphism again, it must
be identical to Tv+Tv(u). In particular, Tv+u = Tv ◦Tu for all v = v0, u = u0 ∈ g((Rd)); i.e.,
{Tv|v = v0 ∈ g((Rd))} forms an abelian group isomorphic to (g((Rd)),+).

3. We furthermore have that {Tv|vi ∈ ĝ≥2(Rd+1) ∀i} forms a non-abelian group. Indeed, we
may construct the inverse of Tv as Tv̄ with

v̄ = −v −
∞∑︂

n=1
(id− Tv)◦n(v)

where the sum converges for every v ∈ [ĝ≥2(Rd+1)]d+1 as (id − Tv) strictly raises the
minimal homogeneity of any element of T≥1((Rd+1)), making projm ◦

∑︁∞
n=1(id − Tv)◦n a

finite sum for any m.
Indeed, for arbitrary v ∈ [ĝ≥2(Rd+1)]d+1 we then have

v+Tv(v̄) = v+ v̄+(Tv−id)v̄ = v−v−(Tv−id)v−
∞∑︂

n=1
(id−Tv)◦n(v)+

∞∑︂
n=2

(id−Tv)◦n(v) = 0,

thus Tv ◦ Tv̄ = T0 = id, which in particular means that Tv : T ((Rd+1)) → T ((Rd+1)) is
surjective. However Tv is also injective, as projnTvx = projnx for any x with lowest non-zero
homogeneity n. Thus Tv̄ = T−1

v . (In fact, v̄ = −T−1
v (v), the sum in the definition of v̄

being a standard construction of a formal series inverse, cf. e.g. [Hai14, Equation (2.22)].)
Note that Tv − id for v ̸= 0 is not a homomorphism and in particular not equal to the
homomorphism Tṽ with ṽi = −i + v.

4. For every integerN ≥ 0, Tv induces a well-defined algebra homomorphism TN
v : TN (R1+d)→

TN (R1+d), which furthermore maps GN (R1+d) into itself.

The following lemma moreover shows that Tv respects the Hopf algebra structure of T ((R1+d)).
Note that T ((R1+d))⊗2 embeds densely into T (R1+d)⊗2, and thus Tv ⊗ Tv extends uniquely to a
continuous algebra homomorphism T (R1+d)⊗2 → T (R1+d)⊗2.
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Lemma 2.2.4. The map Tv : T ((R1+d)) → T ((R1+d)) satisfies (Tv ⊗ Tv)∆� = ∆�Tv and
commutes with the antipode α.

Proof. To show that (Tv⊗Tv)∆� = ∆�Tv, note that both (Tv⊗Tv)∆� and ∆�Tv are continuous
algebra homomorphisms, and so they are equal provided they agree on 0, . . . , d. Indeed, we have

∆�Tv(i) = ∆�(i + vi) = 1⊗ (i + vi) + (i + vi)⊗ 1

(here we used that each vi is a Lie element, i.e., primitive in the sense ∆�vi = 1 ⊗ vi + vi ⊗ 1)
and

(Tv ⊗ Tv)∆�(i) = (Tv ⊗ Tv)(1⊗ i + i⊗ 1) = 1⊗ (i + vi) + (i + vi)⊗ 1,
as required. It remains to show that Tv commutes with the antipode α. Actually, this is implied
by general principles (e.g. [Pre16, Theorem 2.14], and the references therein), but as it is short to
spell out, we give a direct argument: consider the opposite algebra (T ((R1+d)))op (same set and
vector space structure as T ((R1+d)) but with reverse multiplication). Then α : T ((R1+d)) →
(T ((R1+d)))op is an algebra homomorphism, and again it suffices to check that αTv and Tvα
agree on 0, . . . , d. Indeed, since vi ∈ g((Rd+1)), we have α(vi) = −vi, and thus

αTv(i) = α(i + vi) = −i− vi

and
Tvα(i) = Tv(−i) = −i− vi.

2.2.3 Dual action on the shuffle Hopf algebra T (R1+d)
We now wish to describe the dual map T ∗

v : T (R1+d)→ T (R1+d) for which

⟨Tvx, y⟩ = ⟨x, T ∗
v y⟩, for all x ∈ T ((R1+d)), y ∈ T (R1+d).

We note immediately that Lemma 2.2.4 implies T ∗
v is a Hopf algebra homomorphism from

(T (R1+d),�,∆•, α̃) to itself.
For simplicity, and as this is the case most relevant to us, we only consider in detail the case

v = v0 ∈ g((Rd+1)), i.e., vi = 0 for i = 1, . . . , d (but see Remark 2.2.6 for a description of the
general case).

Let S denote the unital free commutative algebra generated by the non-empty words i1 · · · ik =
i1 • . . . • ik in T (R1+d). We let 1 and · denote the unit element and product of S respectively.
For example,

01 · 2 = 2 · 01 ∈ S,
0 · 12 ̸= 0 · 21 ∈ S.

For a word w ∈ T (R1+d), we let D(w) denote the set of all elements

w1 · . . . · wk ⊗ w̃ ∈ S ⊗ T (R1+d)

where w1, . . . , wk is formed from disjoint subwords of w and w̃ is the word obtained by replacing
every wi in w with e0 (note that 1⊗ w, corresponding to k = 0, is also in D(w)).

Consider the linear map S : T (R1+d)→ S ⊗ T (R1+d) defined for all words w ∈ T (R1+d) by

S(w) =
∑︂

w1·...·wk⊗w̃∈D(w)

w1 · . . . · wk ⊗ w̃.
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For example

S(012) =1⊗ 012

+ 0⊗ 012 + 1⊗ 002 + 2⊗ 010

+ (0 · 1)⊗ 002 + (0 · 2)⊗ 010 + (1 · 2)⊗ 000

+ (0 · 1 · 2)⊗ 000 + 01⊗ 02 + 12⊗ 00

+ (01 · 2)⊗ 00 + (0 · 12)⊗ 00

+ 012⊗ 0.

Proposition 2.2.5. Let v = v0 ∈ g((Rd+1)). The dual map T ∗
v : T (R1+d) → T (R1+d) is given

by
T ∗

vw = (v ⊗ id)S(w),
where v(w1 · . . . · wk) := ⟨w1, v⟩ . . . ⟨wk, v⟩ and v(1) := 1.

In principle, Proposition 2.2.5 can be proved algebraically by showing that the adjoint of Φ :=
(v⊗ id)S is an algebra homomorphism from T ((R1+d)) to itself, and check that Φ∗(i) = Tv(i) for
every generator i. Indeed this is the method used in Section 2.3.3 to prove the analogous result
for the translation map on branched rough paths. However, in the current setting of weakly
geometric rough paths, we can provide a direct combinatorial proof.

Proof. Note that the claim is equivalent to showing that for every two words u,w ∈ T (R1+d)
(treating u ∈ T ((R1+d)))

⟨Tvu,w⟩ =
∑︂

w1·...·wk⊗w̃∈D(w)

⟨w1, v⟩ . . . ⟨wk, v⟩⟨w̃, u⟩. (2.4)

Consider a word u = i1 • · · · • ik ∈ T (R1+d). Then

Tv(u) = i1 • . . . • (0 + v) • . . . • ik,

where every occurrence of the letter 0 in u is replaced by 0 +v. We readily deduce that for every
w ∈ T (R1+d)

⟨Tv(u), w⟩ =
∑︂

w1·...·wk⊗w̃∈D(w)
u=w̃

⟨w1, v⟩ . . . ⟨wk, v⟩. (2.5)

For example, with v = [1, 2] = 12− 21 and u = 012, we have

Tv(u) = 012 + 1212− 2112,

and we see that indeed for
w ∈ A := {012, 1212, 2112},

the right hand side of (2.5) gives ⟨Tv(u), w⟩, whilst ⟨w1, v⟩ . . . ⟨wk, v⟩ = 0 for all words w which
are not in A and w1 · . . . · wk ⊗ w̃ ∈ D(w) such that u = w̃. But now (2.5) immediately
implies (2.4).

Remark 2.2.6. A similar result to Proposition 2.2.5 holds for the general case v = (v0, . . . , vd).
The definition of S changes in the obvious way that in the second tensor, instead of replacing every
subword by the letter 0, one instead replaces every combination of subwords by all combinations
of i, i ∈ {0, . . . , d}, while in the first tensor, one marks each extracted subword wj with the
corresponding label i ∈ {0, . . . , d} that replaced it, which gives (wj)i (so the left tensor no
longer belongs to S but instead to the free commutative algebra generated by (w)i, for all words
w ∈ T (R1+d) and labels i ∈ {0, . . . , d}). Finally the term ⟨w1, v⟩ . . . ⟨wk, v⟩ would then be
replaced by ⟨(w1)i1 , vi1⟩ . . . ⟨(wk)ik

, vik
⟩.
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2.3 Translation of branched rough paths
In the previous section we studied the translation operator T , in the setting relevant for weakly
geometric rough paths. Here we extend these results to the branched rough path setting, calling
the translation operator M to avoid confusion. Our construction of M faces new difficulties,
which we resolve with pre-Lie structures. The dual view then leads us to an extraction procedure
of subtrees (a concept familiar from regularity structures, to be explored in Section 2.6).

2.3.1 Preliminaries for forest series
As in the preceding section, we first introduce the notation used throughout the section. Our
setup closely follows Hairer-Kelly [HK15, Section 2]. (For additional algebraic background the
reader can consult e.g. [GVF01, Chapter 14].)

Recall that a rooted tree is a finite connected graph without cycles with a distinguished node
called the root. A rooted tree is unordered if there is no order on the edges leaving a node. We
let B = B(•0, ..., •d) denote the real vector space spanned by the set of unordered rooted trees
with vertices labelled from the set {0, . . . , d}. We denote by B∗ its algebraic dual, which we
identify with the space of formal series of labelled trees; we write B∗ = B∗(•0, ..., •d) accordingly.
We canonically identify with R1+d the subspace of B (and of B∗) spanned by the trees with a
single node {•0, . . . , •d}.

We further denote by H = H(•0, ..., •d) the vector space spanned by (unordered) forests
composed of trees from B (including the empty forest denoted by 1), and let H∗ = H∗(•0, ..., •d)
denote its algebraic dual which we identify with the space of formal series of forests. We canoni-
cally treat B∗ as a subspace of H∗. Following commonly used notation (e.g. [HK15, Section 2.2]),
for trees τ1, . . . , τn ∈ B we let [τ1 . . . τn]•i

∈ B denote the forest τ1 . . . τn ∈ H grafted onto the
node •i.

We equip H∗ with the structure of the Grossman-Larson Hopf-type4 algebra

(H∗, ⋆,∆⊙, α)

and H with the structure of the dual graded Hopf algebra (the Connes-Kreimer Hopf algebra)

(H,⊙,∆⋆, α̃).

In other words, H is the free commutative algebra over B equipped with a coproduct ∆⋆, and
graded by the number of vertices in a forest. We shall often drop the product ⊙ and simply
write τ ⊙ σ = τσ.

The coproduct ∆⋆ may be described in terms of admissible cuts, for which we use the con-
vention to keep the “trunk” on the right: for every tree τ ∈ B

∆⋆τ =
∑︂

c

τ c
1 . . . τ

c
k ⊗ τ c

0,

where we sum over all admissible cuts c of τ , and denote by τ c
0 the trunk and by τ c

1 . . . τ
c
k the

branches of the cut respectively.
In the sequel, we shall also find it convenient to treat the space H equipped with ⋆ as a

subalgebra of H∗, in which case we explicitly refer to it as the algebra (H, ⋆).
4Again, ∆⊙ does not map H∗ into H∗⊗2, but instead into the complete tensor product H⊗2 ≃

∏︁∞
k,m=0H

(k)⊗
H(m), where H(k) denotes the vector space of forests with k vertices, and therefore the structure is not exactly
that of a Hopf algebra. Note also that ∆⊙ is continuous for the product topologies, which we equip H∗ and H⊗2

with henceforth.
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Recall that the space of series B∗ is exactly the set of primitive elements of H∗. We let
G = G(•0, ..., •d) denote the group-like elements of H∗, often called the Butcher group, for which
it holds that

G = exp⋆(B∗).
All the objects introduced above play an analogous role to those of the previous section. To

summarise this correspondence, it is helpful to keep the following picture in mind

“Series space” ... H∗(•0, ..., •d) ≡ H∗ ←→ T ((R1+d))
“Polynomial space” ... H(•0, ..., •d) ≡ H ←→ T (R1+d)
Lie elements ... B∗(•0, ..., •d) ≡ B∗ ⊂ H∗ ←→ g((Rd+1))
Group-like elements ... G(•0, ..., •d) ≡ G ⊂ H∗ ←→ G(R1+d).

As in the previous section, for any integer N ≥ 0 we let HN denote “truncated” algebra
obtained by the quotient of H∗ by the ideal consisting of all series with no forests having less
than N vertices (we keep in mind that the product ⋆ is always in place for the truncated objects).
Similarly, we let GN ⊂ HN and BN ⊂ HN denote the step-N Butcher Lie group over R1+d its
and Lie algebra respectively, constructed in analogous ways.

Finally, as before, we write “(Rd)” to denote the analogous objects built over Rd, treated as
subsets of their “full” counterparts built over R1+d (by identifying Rd with the subspace of R1+d

with basis {e1, . . . , ed}). For example, we treat H∗(Rd) and BN (Rd) as a subalgebra of H∗ and
a Lie subalgebra of BN respectively.

2.3.2 Translation of forest series
2.3.2.1 Non-uniqueness of algebra extensions

In the previous section, we defined a map Tv which “translated” elements in T ((R1+d)) in di-
rections (v0, . . . , vd) ⊂ g((Rd+1)), and which mapped the set of group-like elements G(R1+d)
into itself. In the same spirit, we aim to define a map Mv which translates elements in H∗ in
directions (v0, . . . , vd) ⊂ B∗, and which likewise maps G into itself.

Note that our construction of Tv relied on the fact that any linear map M : R1+d → T ((R1+d))
such that ⟨Mv, 1⟩ = 0 for v ∈ R1+d extended uniquely to a continuous algebra homomorphism
M : T ((R1+d))→ T ((R1+d)) (for the product •). We note here that no such universal property
holds for H∗; indeed, there exists a canonical injective algebra homomorphism

a : T ((R1+d))→ H∗

a : i ↦→ •i

(2.6)

which embeds T ((R1+d)) into a strict subalgebra of H∗.
Specifically, we can see that a is injective by considering the space B∗

ℓ ⊂ B∗ of linear trees,
i.e., trees of the form [. . . [•i1 ]•i2

] . . .]•ik
. Then there is a natural projection πℓ : H∗ → B∗

ℓ , and
one can readily see that πℓ ◦ a is a bijective linear map (this is the same map as described in
[HK15, Remark 2.7]). To see further that the image of T ((R1+d)) under a is not all of H∗, it
suffices to observe that the linear tree [•i]•j is not in the algebra generated by {•i}1+d

i=1 .
Remark 2.3.1. The embedding a arises naturally in the context of branched rough paths as this
is essentially the embedding ı used in [HK15, Section 4.1 and Section 5.1] to realise weakly
geometric rough paths as branched rough paths (though note ı in [HK15] denotes πℓ ◦ a in our
notation).
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Remark 2.3.2. While the above argument shows that (B, [·, ·]) is clearly not isomorphic to g(Rd+1)
as a Lie algebra, it is a curious and non-trivial fact that (B, [·, ·]) is isomorphic to a free Lie algebra
generated by another subspace of B. Correspondingly, (H, ⋆), being isomorphic to the universal
enveloping algebra of B, is isomorphic to a tensor algebra (see [Foi02, Section 8]; see also [Cha10,
Section 6], where the statement about free pre Lie algebras is Corollary 6.3). This was used
in [BC19] to show that the space of branched p-rough paths is canonically isomorphic to a space
of weakly geometric Π-rough paths over an enlarged vector space (see [BC19, Theorem 4.3] for
the statement about the isomorphism between branched and weakly geometric rough paths).

It follows from the above discussion that given a map M : R1+d → H∗, even one whose
range is in B∗, there is in general no canonical choice of how to extend M to elements outside
a(T ((R1+d))) if we only demand that the extension M : H∗ → H∗ is an algebra morphism
(moreover, without calling on Remark 2.3.2, it is a priori not even clear that such an extension
always exists).

Example 2.3.3. Consider the case of a single label 0 (i.e. d = 0), and the map M : {•0, [•0]•0} →
B∗ given by

M : •0 ↦→ •0

M : [•0]•0 ↦→ •0.

Since
•0 ⋆ •0 = [•0]•0 + 2 •0 •0,

we may extend M to an algebra homomorphism on the truncated space H2 → H2 by setting

M(•0•0) = 1
2 ([•0]•0 + 2 •0 •0 − •0) .

This example shows that, on the level of the truncated algebras, there is not a unique algebra
homomorphism above the identity map id : •0 ↦→ •0.

Of course, it is not clear from the above that the identity map id : •0 ↦→ •0 can extend in a
non-trivial way to an algebra homomorphism on all of H∗ ↦→ H∗, but such extensions will always
exist due to Remark 2.3.2.

In what follows, we address this non-uniqueness issue by demanding a finer structure on
the extension of M , namely that M : B∗ → B∗ is a pre-Lie algebra homomorphism. The
notion of a pre-Lie algebra will be recalled in the following subsection, and the significance of
preserving the pre-Lie product on B∗ is first seen when establishing a dual characterization of
M (Proposition 2.3.14), and then again in Section 2.5.2 when studying the impact on (rough)
differential equations. For now, we simply state that this is a natural condition to demand given
the role of pre-Lie algebras in control theory and Butcher series ([CEM11, Section 10],[Man11,
Section 3.4]).

2.3.2.2 The free pre-Lie algebra over R1+d

Definition 2.3.4. A (left) pre-Lie algebra is a vector space V with a bilinear map ▷ : V ×V → V ,
called the pre-Lie product, such that

(x ▷ y) ▷ z − x ▷ (y ▷ z) = (y ▷ x) ▷ z − y ▷ (x ▷ z), for all x, y, z ∈ V.

That is, the associator (x, y, z) := (x ▷ y) ▷ z − x ▷ (y ▷ z) is invariant under exchanging x and y.
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One can readily check that every pre-Lie algebra (V, ▷) induces a Lie algebra (V, [·, ·]) con-
sisting of the same vector space V with bracket [x, y] := x ▷ y − y ▷ x.

Example 2.3.5. A basic example of a pre-Lie algebra is the space of smooth vector fields on Re

with the product (fi∂i) ▶ (fj∂j) := (fi∂ifj)∂j. The induced bracket is the usual Lie bracket of
vector fields.

The space of trees B can be equipped with a (non-associative) pre-Lie product ↷: B×B → B
defined by

τ1 ↷ τ2 =
∑︂

τ

n(τ1, τ2, τ)τ , (2.7)

where the sum is over all trees τ ∈ B and n(τ1, τ2, τ) is the number of single admissible cuts of
τ for which the branch is τ1 and the trunk is τ2. Equivalently, ↷ is given in terms of ⋆ by

τ1 ↷ τ2 = πB(τ1 ⋆ τ2), (2.8)

where πB : H → B is the projection onto B.
It holds that (B,↷) indeed defines a Lie algebra for which

[τ1, τ2] := τ1 ↷ τ2 − τ2 ↷ τ1 = τ1 ⋆ τ2 − τ2 ⋆ τ1,

i.e., the Lie algebra structures on B induced by ⋆ and ↷ coincide. Moreover since ↷ respects
the grading of B, we can naturally extend ↷ to a bilinear map on the space of series, so that
(B∗,↷) is also a pre-Lie algebra.

We now recall the following universal property of (B,↷) first established by Chapoton and
Livernet in [CL01, Corollary 1.10] (see also [DL02, Theorem 6.3]).

Theorem 2.3.6. The space (B,↷) is the free pre-Lie algebra over R1+d.

An equivalent formulation of Theorem 2.3.6 is that for any pre-Lie algebra (V, ▷) and linear
map M : R1+d → V , there exists a unique extension of M to a pre-Lie algebra homomorphism
M : (B,↷)→ (V, ▷).

2.3.2.3 Construction of the translation map

An immediate consequence of Theorem 2.3.6 is the following.

Theorem 2.3.7. Every linear map M : R1+d → B∗ extends to a unique continuous algebra
homomorphism M : H∗ → H∗ whose restriction to B∗ is a pre-Lie algebra homomorphism from
B∗ to itself.

Proof. By Theorem 2.3.6, M extends uniquely to a pre-Lie algebra homomorphism M : B → B∗.
Recall also that, by the Milnor-Moore theorem, (H, ⋆) is isomorphic to the universal enveloping
algebra of (B, [·, ·]). It follows that M extends further to a unique algebra homomorphism
M : (H, ⋆)→ (H∗, ⋆). Finally, since M necessarily does not decrease the degree of every element
x ∈ H, we obtain a unique continuous extension M : H∗ → H∗ for which the restriction
M : B∗ → B∗ is a pre-Lie algebra homomorphism as desired.

We can finally define a natural translation map Mv : H∗ → H∗ analogous to Tv.

Definition 2.3.8. For v = (v0, . . . , vd) ⊂ B∗, define Mv : H∗ → H∗ as the unique continuous
algebra homomorphism obtained in Theorem 2.3.7 from the linear map

Mv : R1+d → B∗

Mv : •i ↦→ •i + vi, for all i ∈ {0, . . . , d}.



32 CHAPTER 2. A ROUGH PATH PERSPECTIVE ON RENORMALIZATION

Note: Do not confuse Mv with the map Mp from Definition 3.3.1, they are different in nature
and not even defined on the same space!

Example 2.3.9. Let us illustrate how the construction works in the case of two nodes with a
single label 0. Since Mv is constructed as pre-Lie algebra homomorphism, we compute

Mv

(︁
[•0]•0

)︁
= Mv (•0 ↷ •0) = Mv (•0) ↷Mv (•0) = (•0 + v0) ↷ (•0 + v0) .

Since Mv is in addition an algebra homomorphism w.r.t. ⋆ we have

(•0 + v0) ⋆ (•0 + v0) = (Mv•0) ⋆ (Mv•0) = Mv (•0 ⋆ •0) = Mv

(︁
2 •0 •0 + [•0]•0

)︁
from which we can uniquely determine Mv (•0•0).

As in the previous section, we shall often be concerned with the case that vi = 0 for i = 1, . . . , d
and v0 takes a special form. We again make precise whenever such a condition is in place by
writing, for example, v = v0 ∈ BN (Rd).
Remark 2.3.10. We observe the following immediate properties of Mv, analogous to those of Tv:

1. Since Mv is an algebra homomorphism which preserves the Lie algebra B∗, it holds that
Mv maps G into G;

2. Mv ◦ Mu = Mv+Mv(u), where we write Mv(u) = (Mv(u0), . . . ,Mv(ud)). In particular,
Mv+u = Mv ◦Mu for all v = v0, u = u0 ∈ B∗(Rd); i.e., {Mv|v = v0 ∈ B(Rd)∗} forms an
abelian group isomorphic to (B(Rd)∗,+).

3. We furthermore have that {Mv|vi ∈ B∗
≥2(Rd+1) ∀i} forms a non-abelian group. Indeed, we

may construct the inverse of Mv as Mv̄ with

v̄ = −v −
∞∑︂

n=1
(id−Mv)◦n(v).

4. For every integer N ≥ 0, Mv induces a well-defined algebra homomorphism MN
v : HN →

HN , which maps GN into GN ;

5. Recall the embedding a : T ((R1+d)) → H∗ from (2.6). Then for all v = (v0, . . . , vd) ⊂
g((Rd+1)), it holds that Ma(v) ◦a = a◦Tv (as both are continuous algebra homomorphisms
from T ((R1+d)) to H∗ which agree on e0, . . . , ed).

As in the remark before Lemma 2.2.4, note that H∗⊗2 embeds densely into H⊗2, and thus
Mv ⊗Mv extends uniquely to a continuous algebra homomorphism H⊗2 → H⊗2.

Lemma 2.3.11. The map Mv : H∗ → H∗ satisfies (Mv ⊗Mv)∆⊙ = ∆⊙Mv and commutes with
the antipode α.

Remark 2.3.12. We note that in the following proof, we only use the fact that Mv is a continuous
algebra homomorphism from H∗ to itself which preserves the space of primitive elements B∗,
and so do not directly use the fact that Mv preserves the pre-Lie product of B∗.

Proof. To show that the maps (Mv ⊗ Mv)∆⊙ and ∆⊙Mv agree, by continuity it suffices to
show they agree on H. In turn, their restrictions to H are algebra homomorphisms on (H, ⋆),
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and, since (H, ⋆) is the universal enveloping algebra of its space of primitive elements B by the
Milnor-Moore theorem, it suffices to show that

(Mv ⊗Mv)∆⊙τ = ∆⊙Mvτ , for all τ ∈ B.

But this is immediate since Mv maps B∗ into itself and Mv(1) = 1. It remains to show that
Mv commutes with the antipode, which follows from the same argument as in the proof of
Lemma 2.2.4.

2.3.3 Dual action on the Connes–Kreimer Hopf algebra H
As in Section 2.2.3, we now wish to describe the dual map M∗

v : H → H for which

⟨Mvx, y⟩ = ⟨x,M∗
v y⟩, for all x ∈ H∗, y ∈ H.

For simplicity, we again consider in detail only the special case vi = 0 for i = 1, . . . , d (but see
Remark 2.3.16 for a description of the general case).

Let A denote the unital free commutative algebra generated by the trees τ ∈ B. We let 1
and · denote the unit element and product of A respectively. The algebra A plays here the same
role as the algebra S in Section 2.2.3.
Remark 2.3.13. Although the algebras (A, ·) and (H,⊙) are isomorphic, they should be thought
of as separate spaces and thus we make a clear distinction between the two.

For a tree τ ∈ B, we let D(τ) denote the set of all elements

τ1 · . . . · τk ⊗ τ̃ ∈ A⊗ B

where τ1, . . . , τk is formed from all disjoint collections of non-empty subtrees of τ (including
subtrees consisting of a single node), and τ̃ is the tree obtained by contracting every subtree τ i

to a single node which is then labelled by 0 (note that 1⊗ τ , corresponding to k = 0, is also in
D(τ)).

Consider the linear map δ : H → A⊗H defined for all trees τ ∈ B by

δτ =
∑︂

τ1·...·τk⊗τ̃∈D(τ)

τ1 · . . . · τk ⊗ τ̃ ,

and then extended multiplicatively to all of H, where we canonically treat A⊗H as an algebra
with multiplication MA⊗H(τ1⊗ τ̂1⊗ τ2⊗ τ̂2) := (τ1 · τ2)⊗ (τ̂1⊙ τ̂2) for τ1, τ2 ∈ A, τ̂1, τ̂2 ∈ H.

For example,

δ
i

kj

= 1⊗
i

kj

+
i
⊗

0

kj

+
j
⊗

i

k0

+
k
⊗

i

0j

+
i

k

⊗
0

j

+
i

j

⊗
0

k

+
i

kj

⊗
0

+
i
·

j
⊗

0

k0

+
i
·

k
⊗

0

0j

+
j
·

k
⊗

i

00

+
j
·

i

k

⊗
0

0

+
k
·

i

j

⊗
0

0

+
i
·

j
·

k
⊗

0

00
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Proposition 2.3.14. Let v = v0 ∈ B∗. The dual map M∗
v : H → H is given by

M∗
v τ = (v ⊗ id) ◦ δ(τ),

where v(τ1 · . . . · τk) := ⟨τ1, v⟩ . . . ⟨τk, v⟩ and v(1) := 1.

For the proof of Proposition 2.3.14, we require the following combinatorial lemma. We note
that similar “cointeraction” results appear for closely related algebraic structures in [CEM11,
Theorem 8] and [BHZ19, Proposition 3.27 and Theorem 5.37]. We will particularly discuss in
further detail the link with the work of [BHZ19] in Section 2.6.

Lemma 2.3.15. Let ∆↷ : B → B ⊗ B denote the adjoint of ↷. It holds that

(id⊗∆↷)δ =M1,3(δ ⊗ δ) ∆↷, (2.9)

whereM1,3 : A⊗B⊗A⊗B → A⊗B⊗B is the linear map defined byM1,3(τ1 ⊗ τ2 ⊗ τ3 ⊗ τ4) =
τ1τ3 ⊗ τ2 ⊗ τ4.

Proof. Note that
∆↷ τ =

∑︂
c

bc ⊗ τ c

where the sum runs of all single admissible cuts c of τ , and bc is the branch, τ c the trunk of c.
Consider a single cut c of τ across an edge e. Let τ c denote the sum of the terms of (id⊗∆↷)δτ
obtained by contracting all collections of subtrees of τ which do not contain e, followed by a cut
(on the second tensor) along the edge e (which necessarily remains). One immediately sees that τ c

is equivalently given by first cutting along e, and then contracting along all collections of subtrees
of bc and τ c, and then grouping the extracted subtrees together, i.e., τ c =M1,3(δ ⊗ δ)(bc ⊗ τ c).
It finally remains to observe that summing over all single cuts c gives (2.9).

Proof of Proposition 2.3.14. Denote by

Φ = (v ⊗ id) ◦ δ : B → B.

By duality, it follows from Lemma 2.3.11 that M∗
v is a Hopf algebra homomorphism. In particular,

it suffices to show that Φτ = M∗
v τ for every tree τ ∈ B.

To this end, observe that Lemma 2.3.15 implies ∆↷ Φ = (Φ⊗ Φ) ∆↷, from which it follows
that Φ∗ : B∗ → B∗ is a pre-Lie algebra homomorphism. Furthermore, for every tree τ ∈ B

for all i ∈ {1, . . . , d}, ⟨Φ∗•i, τ⟩ = ⟨•i,Φτ⟩ = ⟨•i, τ⟩ = ⟨Mv•i, τ⟩;
⟨Φ∗•0, τ⟩ = ⟨•0,Φτ⟩ = ⟨•0, τ⟩+ ⟨v, τ⟩ = ⟨Mv•0, τ⟩.

It follows that Φ∗ is a pre-Lie algebra homomorphism on (B∗,↷) which agrees with Mv on the
set {•0, . . . , •d} ⊂ B∗. Hence, by the universal property of (B,↷) (Theorem 2.3.6), Φ∗ agrees
with Mv on all of B∗, which concludes the proof.

Remark 2.3.16. A similar result to Proposition 2.3.14 holds for the general case v = (v0, . . . , vd).
The definition of δ changes in the obvious way that in the second tensor, instead of replacing every
subtree by the node •0, one instead replaces every combination of subtrees by all combinations
of •i, i ∈ {0, . . . , d}, while in the first tensor, one marks each extracted subtree τ j with the
corresponding label i ∈ {0, . . . , d} that replaced it, which gives (τ j)i (so the left tensor no
longer belongs to A but instead to the free commutative algebra generated by (τ)i, for all trees
τ ∈ B and labels i ∈ {0, . . . , d}). Finally the term ⟨τ1, v⟩ . . . ⟨τk, v⟩ would then be replaced by
⟨(τ1)i1 , vi1⟩ . . . ⟨(τk)ik

, vik
⟩.
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2.4 Examples
In the following examples, we assume that we are given a probability space (Ω,F ,P) and a
filtration (Ft)t≥0 satisfying the usual hypotheses and to which all mentioned stochastic processes
are adapted.

2.4.1 Itô-Stratonovich conversion
As an application of Proposition 2.3.14, we illustrate how to re-express iterated Stratonovich
integrals (and products thereof) over some interval [s, t] as Itô integrals. Consider the R1+d-
valued process Bt = (B0

t , B
1
t , . . . , B

d
t ), where (B1

t , . . . , B
d
t ) is an Rd-valued Brownian motion

with covariance [Bi, Bj ]t = Ci,jt, and B0
t ≡ t denotes the time component. Let BStrat denote

the enhancement of Bt to an α-Hölder branched rough path, α ∈ (0, 1/2), using Stratonovich
iterated integrals. For example,⟨︁

BStrat
s,t , τ

⟩︁
=

∫︂
· · ·
∫︂

s<t1<···<tm<t

◦ dBi1
t1
◦ · · · ◦ dBim

tm
(2.10)

for the linear tree τ = [. . . [•i1 ]•i2
. . .]•im

, i1, . . . , im ∈ {0, . . . , d},

and ⟨︁
BStrat

s,t , τ
⟩︁

=
∫︂ t

s

Bj
uB

k
u ◦ dBi

u

for τ = [•j•k]•i
, i, j, k ∈ {0, . . . , d}.

Similarly, we define BItô in exactly the same way using Itô integrals.
For a tree τ ∈ B, recall the definition of D(τ) ⊂ A⊗B from Section 2.3.3 (which was used to

define δ). Consider the function C : D(τ)→ R defined by

C(τ1 · . . . · τk ⊗ τ̃) =

⎧⎪⎨⎪⎩
1 if τ1 · . . . · τk ⊗ τ̃ = 1⊗ τ
2−k

∏︁k
n=1 C

in,jn
n if τn = [•in

]•jn
for all n = 1, . . . , k

0 otherwise.

Proposition 2.4.1. For every tree τ ∈ B it holds that

⟨BStrat
s,t , τ⟩ =

∑︂
τ1·...·τk⊗τ̃∈D(τ)

C(τ1 · . . . · τk ⊗ τ̃)⟨BItô
s,t , τ̃⟩. (2.11)

Proof. Consider the sum of linear trees v = v0 = 1
2
∑︁d

i,j=1 C
i,j [•i]•j

∈ B2(Rd). One can readily
verify that BStrat = Mv(BItô), understood in the pointwise sense BStrat

s,t = Mv(BItô
s,t ). Indeed,

both BStrat and Mv(BItô) are a.s. “full” α-Hölder rough paths, where this fact - in the case of
Mv(BItô) - either requires an (easy) check by hand, or an appeal to Theorem 2.5.1, (ii), below.
Since, by construction, both agree on the first two levels, and α ∈ (1/2, 1/3), we see that BStrat

and Mv(BItô) must be equal, a.s., thanks to the uniqueness part of the extension theorem.
It then follows by Proposition 2.3.14 that

⟨BStrat
s,t , τ⟩ = ⟨BItô

s,t ,M
∗
v τ⟩ =

∑︂
τ1·...·τk⊗τ̃∈D(τ)

⟨BItô
s,t , ⟨v, τ1⟩ . . . ⟨v, τk⟩τ̃⟩.

Since ⟨v,1⟩ = 1, while ⟨v, τn⟩ = 1
2C

i,j if τn = [•i]•j
and zero otherwise, we obtain precisely (2.11).
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Example 2.4.2. Suppose B is a standard Brownian motion, i.e., Ci,j = δij. Consider the tree
τ = [•j•k]•i , so that

⟨BStrat
s,t , τ⟩ =

∫︂ t

s

Bj
uB

k
u ◦ dBi

u.

Recalling the explicit form of δτ in (??), we see that if i is distinct from both j, k, then only 1⊗τ
remains in D(τ) for which C is non-zero, and so (in trivial agreement with stochastic calculus)

⟨BStrat
s,t , τ⟩ = ⟨BItô

s,t , τ⟩.

On the other hand,if i = j ̸= k, an additional term [•i]•i
⊗ [•k]•0 appears in D(τ) at which C is

1
2 , and so

⟨BStrat
s,t , τ⟩ = ⟨BItô

s,t , τ⟩+ 1
2

∫︂ ∫︂
s<t1<t2<t

dBk
t1
dB0

t2

= ⟨BItô
s,t , τ⟩+ 1

2

∫︂ t

s

Bk
udu.

The case i = k ̸= j is identical. At last, in the case i = j = k, looking at δτ shows that

⟨BStrat, τ⟩ = ⟨BItô, τ⟩+ 1
2

∫︂ ∫︂
s<t1<t2<t

dBi
t1
dB0

t2
+ 1

2

∫︂ ∫︂
s<t1<t2<t

dBi
t1
dB0

t2

= ⟨BItô, τ⟩+
∫︂ t

s

Bi
udu.

Remark 2.4.3. When τ = [. . . [•i1 ]•i2
. . .]•im

is a linear tree, this is in agreement with [Ben89,
Proposition 1]. In fact, by considering general semi-martingales X1

t , . . . , X
d
t and adding extra

labels •i,j , 1 ≤ i ≤ j ≤ d (thus increasing the underlying dimension from d to d + d(d + 1)/2)
to encode the quadratic variants [Xi, Xj ], the above procedure (in the more general setting with
elements vij = [•i]•j ∈ B2(Rd), see Remark 2.3.16), immediately provides an Itô-Stratonovich
conversion formula for general semi-martingales.

2.4.2 Lévy rough paths
Note that the example in the previous section can be viewed as follows: BItô and BStrat are both
G2-valued Lévy processes which are branched p-rough paths, 2 < p < 3, and one can recover the
signature of one from the other by a suitable (deterministic) translation map Mv : G → G. We
now consider a generalisation of this setting to arbitrary GN -valued Lévy processes, which have
already been studied in the context of rough paths in [FS17, Section 3] and [Che18].

Let τ1, . . . , τm be a basis for BN consisting of trees, which we identify with left-invariant
vector fields on GN , where we suppose for convenience that τ1 = •0. Recall that GN is a
homogenous group in the sense of [FS82, Section 1.A] (cf. [HK15, Remark 2.15]).

Recall that to every (left) Lévy process X in GN without jumps and with identity starting
point (i.e., X0 = 1GN a.s.) there is an associated Lévy tuple (A,B), where B =

∑︁m
i=1 B

iτ i is an
element of BN and (Ai,j)m

i,j=1 is a correlation matrix. Then the generator of X is given for all
f ∈ C2

0 (GN ) by (see, e.g., [Lia04, Theorem 1.1])

lim
t→0

t−1E [f(x ⋆Xt)− f(x)] =
m∑︂

i=1
Bi(τ if)(x) + 1

2

m∑︂
i,j=1

Ai,j(τ iτ jf)(x).
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Lemma 2.4.4. Let M : (HN , ⋆) → (HN , ⋆) be an algebra homomorphism which preserves GN

and X a Lévy process in GN with Lévy tuple (A,B).
Then M(X) is the (unique in law) GN -valued (left) Lévy process with generator given for all

f ∈ C2
0 (GN ) by

lim
t→0

t−1E [f(x ⋆MXt)− f(x)] =
m∑︂

i=1
Bi(Mτ if)(x) + 1

2

m∑︂
i,j=1

Ai,j(Mτ iMτ jf)(x). (2.12)

Proof. The fact that MX is a Lévy process is immediate from the fact that X is a Lévy process
and that M : GN → GN is a (continuous) group homomorphism. It thus only remains to
show (2.12), where we may suppose without loss of generality that x = 1GN . To this end, define
h = f ◦M and observe that

lim
t→0

t−1E [f(MXt)− f(1GN )] =
m∑︂

i=1
Bi(τ ih)(1GN ) + 1

2

m∑︂
i,j=1

Ai,j(τ iτ jh)(1GN )

(note that in general h might fail to decay at infinity and thus not be an element of C2
0 (GN ),

however the above limit is readily justified by taking suitable approximations). Using the fact
that (τh)(x) = d

dth(x ⋆ etτ ) |t=0, one can easily verify that for all σ, τ ∈ BN and x ∈ GN

(τh)(x) = (Mτf)(Mx),
(στh)(x) = ((Mσ)(Mτ)f)(Mx),

from which (2.12) follows.

We now specialise to the case that (Ai,j)m
i,j=1 is a correlation matrix for which Ai,i = 0

whenever τ i has more than ⌊N/2⌋ nodes, which is a necessary and sufficient condition for the
sample paths of X to a.s. have finite p-variation for all N < p < N + 1 [Che18, Theorem 5.1].
Assume also that Ai,i = 0 whenever τ i contains a node with label 0, and that B = τ1 = •0, so
that for all f ∈ C2

0 (GN )

lim
t→0

t−1E [f(x ⋆Xt)− f(x)] = (τ1f)(x) + 1
2

m∑︂
i,j=1

Ai,j(τ iτ jf)(x).

The drift term (τ1f)(x) should be interpreted as the time component of the branched rough path
X (which also explains the zero-diffusion condition in the direction of trees with a label 0).

Any other GN -valued Lévy process X̃ without jumps and the same correlation matrix (Ai,j)m
i,j=1

is also a branched p-rough path, and its generator differs from that of X only by a drift term.
As a consequence of Lemma 2.4.4, we see that every such X̃ can be constructed by applying a
(deterministic) translation map Mv to X. In particular, the full signature of X̃ can be recovered
from that of X, generalising the example from Section 2.4.1.
Corollary 2.4.5. Let v = v0 ∈ BN and Mv : HN → HN the truncation of the translation map
from Section 2.3.2.3.

Then Mv(X) is the (unique in law) GN -valued (left) Lévy process with generator given for all
f ∈ C2

0 (GN ) by

lim
t→0

t−1E [f(x ⋆Mv(Xt))− f(x)] = (•0 + v)f(x) + 1
2

m∑︂
i,j=1

Ai,j(τ iτ jf)(x).

Remark 2.4.6. The statement of the corollary likewise holds for every algebra homomorphism
M : HN → HN satisfying M•0 = •0 + v and Mτ = τ for all forests τ ∈ HN without a label 0,
which is a manifestation of the final point of the upcoming Theorem 2.5.1 (ii).
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2.4.3 Higher-order translation and renormalization in finite-dimensions
In [BCF18], from which we give an excerpt in this subsection, two examples are studied of
families of random bounded variation paths (Xε)ε>0 whose canonical lifts to geometric rough
paths (Xε)ε>0 diverge as ε → 0. In particular, ODEs driven by Xε in general also fail to
converge. However, for suitably chosen vε = vε

0 ∈ g≤N (Rd), for which in general limε→0 |vε| =∞,
one obtains convergence of the translated rough paths TvεXε. In particular, it follows from the
upcoming Theorem 2.5.10 that solutions to modified ODEs driven by Xε, with terms generally
diverging as ε→ 0, converge to well-defined limits. In this specific context, the translation maps
Tvε are precisely the renormalization maps occurring in regularity structures when applied to
the setting of SDEs; we shall make this connection precise in Section 2.6.

2.4.3.1 Physical Brownian motion in a (large) magnetic field.

It was shown in [FGL15, Theorem 1] that the motion of a charged Brownian particle, in the zero
mass limit, in a magnetic field which is kept constant while taking the limit, naturally leads to
a perturbed second level, of the form B̄s,t = BStrat

s,t + v (t− s) for some 0 ̸= v ∈ so (d), v being
proportional to the strength of the magnetic field. We now want to look at the evolution of the
system under the blow-up of the magnetic field.

Consider a physical Brownian motion in a magnetic field with dynamics given by

mẍ = −Aẋ+Bẋ+ ξ, x(t) ∈ Rd,

where A is a symmetric matrix with strictly positive spectrum (representing friction), B is an
anti-symmetric matrix (representing the Lorentz force due to a magnetic field), and ξ is an Rd-
valued white noise in time. We shall consider the situation that A is constant whereas B is a
function of the mass m.

We rewrite these dynamics as

dXt = 1
m
Ptdt, X0 = 0,

dPt = − 1
m
MPtdt+ dWt, P0 = 0,

where M = A − B, and we have chosen the starting point as zero simply for convenience. We
furthermore introduce the parameter ε2 = m and write Xε

t , P
ε
t , and Mε = A−Bε to denote the

dependence on ε.
We are interested in the convergence of the processes P ε and MεXε in rough path topologies.

As before in Section 2.2, let G2(Rd) and g≤2(Rd) denote the step-2 free nilpotent Lie group
and Lie algebra respectively. Let us also write g≤2(Rd) = Rd ⊕ g2(Rd) for the decomposition
of g≤2(Rd) into the first and second levels, where we identify g2(Rd) with the space of anti-
symmetric d× d matrices.

For every ε > 0, define the matrix

Cε =
∫︂ ∞

0
e−Mεse−(Mε)∗sds,

and the element
vε = −1

2(MεCε − Cε(Mε)∗) ∈ g2(Rd).

For α ∈ (1/3, 1/2], due to the extension theorem, any α-Hölder weakly geometric rough path
Z : [0, T ]2 → G(Rd) is fully characterized by the truncation π2Z : [0, T ]2 → G2(Rd). Thus, for
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the purpose of this example, we represent any such rough path Z by the increments Zs,t of the
underlying path and the second level Zs,t, i.e.

Zi
s,t = ⟨Zs,t, i⟩, Zj,k

s,t = ⟨Zs,t, jk⟩.

In this special case and for any v = v0 ∈ g2(Rd), the translation map introduced in Defini-
tion 2.2.2 is given by

Tv(Zs,t,Zs,t) = (Zs,t,Zs,t + (t− s)v). (2.13)

Consider the G2(Rd)-valued processes

(P ε
s,t,Pε

s,t) =
(︃
P ε

s,t,

∫︂ t

s

P ε
s,r • ◦dP ε

r

)︃
,

(Zε
s,t,Zε

s,t) =
(︃
MεXε

s,t,

∫︂ t

s

MεXs,r • d(MεXε)r

)︃
,

and the canonical lift of the Brownian motion W

(Ws,t,Ws,t) =
(︃
Ws,t,

∫︂ t

s

Ws,r • ◦dWr

)︃
,

where the integrals in the definition of Pε
s,t and Ws,t are in the Stratonovich sense.

Contrary to [FGL15], we allow blow-up of the magnetic field with rate Bε ≲ ε−κ, κ ∈ [0, 1],
as a method to model magnetic fields which are large (in a quantified way) in comparison to
the (small) mass. The paths Zε then form approximations of Brownian motion, whose canonical
rough path lifts (Zε,Zε) do not converge in rough path space (due to divergence of the Lévy’s
area). The following result establishes convergence of the “renormalised” paths Tvε(P ε

s,t,Pε
s,t)

and Tvε(Zε
s,t,Zε

s,t).

Theorem 2.4.7 ([BCF18, Theorem 1]). Suppose that

lim
ε→0
|Mε|εκ = 0 for some κ ∈ [0, 1]. (2.14)

Then for any α ∈ [0, 1/2−κ/4) and q <∞, it holds that Tvε(P ε,Pε)→ (0, 0) and Tvε(Zε,Zε)→
(W,W) in Lq and α-Hölder topology as ε→ 0. More precisely, as ε→ 0, in Lq

sup
s,t∈[0,T ]

|P ε
s,t|

|t− s|α
+ sup

s,t∈[0,T ]

|Pε
s,t + (t− s)vε|
|t− s|2α

→ 0.

and

sup
s,t∈[0,T ]

|Zε
s,t −Ws,t|
|t− s|α

+ sup
s,t∈[0,T ]

|Zε
s,t + (t− s)vε −Ws,t|

|t− s|2α
→ 0.

In particular, if κ ∈ [0, 2
3 ), one can take α ∈ ( 1

3 ,
1
2 −

κ
4 ) and convergence takes place in α-Hölder

rough path topology.

Lastly, we would like to point out that higher-order renormalization can be expected in
the presence of highly oscillatory fields, which also points to some natural connections with
homogenization theory.
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2.4.3.2 Fractional delay / Hoff process

Viewed as two-dimensional rough paths, Brownian motion and its ε-delay, t ↦→ (Bt, Bt−ε), does
not converge to (B,B), with - as one may expect - zero area. Instead, the quadratic variation of
Brownian motion leads to a rough path limit of the form (B,B;A) with area of order one [FV10,
Theorem 13.31]. It is then possible to check that, replacing B by a fractional Brownian motion
with Hurst parameter H < 1/2, the same construction will yield exploding Lévy area as ε ↓ 0.

The same phenomenon is seen in lead-lag situations, popular in time series analysis. As in the
case of physical Brownian motion in a (large) magnetic field, these divergences can be cured by
applying suitable (second-level) translation / renormalization operators, as we shall now see; for
details on the (non-divergent) Brownian / semi-martingale case, see e.g. [FV10, Section 13.3.5]
and [FHL16].

Consider a path X : [0, 1] ↦→ Rd. Let n ≥ 1 be an integer and write for brevity Xn
i = Xi/n.

Consider the piecewise linear path X̃n : [0, 1] ↦→ R2d defined by

X̃n
2i/2n = (Xn

i , X
n
i ),

X̃n
(2i+1)/2n = (Xn

i , X
n
i+1),

and linear on the intervals
[︁ 2i

2n ,
2i+1

2n

]︁
and

[︁ 2i+1
2n , 2i+2

2n

]︁
for all i = 0, . . . , n − 1. Note that this is

a variant of the Hoff process considered in [FHL16] (as given in [FHL16, Definition 2.1]).
Denote by X̃n

s,t = π2 exp•(X̃n
s,t + An

s,t) the level-2 lift of X̃n, where An
s,t is the (2d) × (2d)

anti-symmetric Lévy area matrix given by

An
s,t = 1

2

(︃∫︂ t

s

X̃n
s,r • dX̃n

r −
∫︂ t

s

X̃n
s,r • dX̃n

r

)︃
.

Let H ∈ (0, 1) and consider a fractional Brownian motion BH with covariance R(s, t) =
1
2 (t2H + s2H − |t− s|2H). Let X : [0, 1] ↦→ Rd be d independent copies of BH .

Recall the definition of Tv from (2.13). We are interested in the convergence in rough path
topologies of Tṽn(X̃n) where ṽn ∈ g2(R2d) is appropriately chosen. Define the (diagonal) d × d
matrix

vn = 1
2E
[︄

n−1∑︂
k=0

(Xn
k+1 −Xn

k )⊗ (Xn
k+1 −Xn

k )
]︄

= n1−2H

2 I,

and the anti-symmetric (2d)× (2d) matrix

ṽn =
(︃

0 −vn

vn 0

)︃
∈ g2(R2d).

Finally, consider the path X̃ = (X,X) : [0, 1] ↦→ R2d, its canonically defined Lévy area A (which
exists for 1/4 < H ≤ 1), and its level-2 lift X̃ = π2 exp•(X̃+A). The following result establishes
convergence of the “renormalised path” Tṽn(X̃n).

Theorem 2.4.8 ([BCF18, Theorem 5]). Suppose 1/4 < H ≤ 1/2. Then for all α ∈ [0, H) and
q <∞, it holds that Tṽn(X̃n)→ X̃ in Lq and α-Hölder topology. More precisely, as n→∞, in
Lq

sup
s,t∈[0,T ]

|X̃n
s,t − X̃s,t|
|t− s|α

+ sup
s,t∈[0,T ]

|An
s,t + (t− s)ṽn − As,t|

|t− s|2α
→ 0.
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2.4.3.3 Rough stochastic volatility and robust Itô integration.

Applications from quantitative finance recently led to the pathwise study of the (1-dimensional)
Itô-integral, ∫︂ T

0
f(B̂t)dBt with B̂t =

∫︂ t

0
|t− s|H−1/2

dBs

where f : R → R is of the form x ↦→ exp (ηx). When H ∈ (0, 1/2), the case relevant in
applications, this stochastic integration is singular in the sense that the mollifier approximations
actually diverge (infinite Itô-Stratonovich correction, due to infinite quadratic variation of B̂
when H < 1/2). The integrand f(B̂t), which plays the role of a stochastic volatility process
(η > 0 is a volatility-of-volatility parameter) is not a controlled rough path, nor has the pair
(B̂, B) a satisfactory rough path lift (the Itô integral

∫︁
B̂dB is well-defined, but

∫︁
BdB̂ is not).

The correct “Itô rough path” in this context is then an Rn+1-valued “partial” branched rough
path of the form (︃

B, B̂,

∫︂
B̂dB, ...

∫︂
B̂ndB

)︃
where n ∼ 1/H. Again, mollifier approximations will diverge but it is possible to see that one can
carry out a renormalization which restores convergence to the Itô limit. (We note the similarity
with SPDE situations like KPZ.) See [BFG+20] for details.

2.5 Rough differential equations
2.5.1 Translated rough paths are rough paths
We now show that the maps Tv and Mv act on the spaces of weakly geometric and branched rough
paths. Throughout, we regard these rough paths as fully lifted, as can always (and uniquely) be
done thanks to the extension theorem. The action of our translation operator is then pointwise,
i.e.

(MvX)s,t := Mv(Xs,t),

and similarly for the weakly geometric rough path translation operator T . In the following, we let
|w| denote the length of a word w ∈ T (R1+d) (resp. number of nodes in a forest w ∈ H), and equip
the space of α-Hölder weakly geometric (resp. branched) rough paths with the inhomogeneous
Hölder norm

||X||α-Höl;[s,t] = max
|w|≤⌊1/α⌋

sup
u ̸=v∈[s,t]

|⟨Xu,v, w⟩|
|v − u||w|α ,

where the max runs over all words w ∈ T (R1+d) (resp. forests w ∈ H) with |w| ≤ ⌊1/α⌋.

Theorem 2.5.1. Let α ∈ (0, 1] and X a α-Hölder weakly geometric (resp. branched) rough path
over R1+d.

(i) Let v = (v0, v1 . . . , vd) be a collection of elements in g≤N (Rd+1) (resp. in BN ).
Then TvX (resp. MvX) is a α/N -Hölder weakly geometric (resp. branched) rough path
satisfying

||TvX||α/N-Höl;[s,t] (resp. ||MvX||α/N-Höl;[s,t]) ≤ Cv ||X||α-Höl;[s,t] (2.15)

for a constant Cv depending polynomially on v.
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(ii) Let v = (v0, 0, . . . 0) for v0 ∈ g≤N (Rd+1) (resp. v0 ∈ BN ). Suppose that X satisfies

||X||(1,α)-Höl;[s,t] := max
|w|≤⌊1/α⌋

sup
u ̸=v∈[s,t]

|⟨Xu,v, w⟩|
|v − u|(1−α)|w|0+α|w| <∞, (2.16)

where the max runs over all words w ∈ T (R1+d) (resp. forests w ∈ H) with |w| ≤ ⌊1/α⌋
and |w|0 denotes the number of times the letter e0 (resp. label 0) appears in w.
Then TvX (resp. MvX) is a α ∧ (1/N)-Hölder weakly geometric (resp. branched) rough
path over R1+d satisfying

||TvX||α∧(1/N)-Höl;[s,t] (resp. ||MvX||α∧(1/N)-Höl;[s,t]) ≤ Cv ||X||(1,α)-Höl;[s,t]

for a constant Cv depending polynomially on v.
Finally, in the setting of branched rough paths, let M : H∗ → H∗ be any continuous algebra
homomorphism which preserves G and such that Mτ = τ for every forest τ ∈ H without a
label 0, and M•0 = Mv•0 = •0 + v0. Then MX = MvX.

Before the proof of the theorem, several remarks are in order.
Remark 2.5.2. In Theorem 2.5.1 we treat α-Hölder weakly geometric rough paths as already
enhanced with their iterated integrals. Thus Xs,t is an element of T ((R1+d)) and (TvX)s,t is just
the image of Xs,t under Tv. Therefore the statement of the proposition is that not only does
(TvX)s,t have the correct regularity on the first n = ⌊1/α⌋ levels to qualify as a rough path but
that all further iterated integrals are already given, in a purely algebraic way, by (TvX). That
said, if one takes the level-n view, writing πn(TvX) for the translation only defined as a level-n
rough path, the extension theorem asserts that there is a unique full rough path lift, say Z. But
then, by the uniqueness part of the extension theorem, Z = TvX so that our construction is
compatible with the rough path extension.

The same remark applies to branched rough paths, where we recall that, as a particular
consequence of the sewing lemma, every α-Hölder branched rough path admits a unique lift
(extension) to all of H∗ ([Gub10, Theorem 7.3], or [HK15, page 223]). We would also like to
point out that Boedihardjo in [Boe18, Theorem 4] recently extended a result on the factorial
decay of lifts of geometric rough paths (first shown as part of [Lyo98, Theorem 2.2.1]) to the
branched setting, answering a conjecture in [Gub10, Remark 7.4].
Remark 2.5.3. In the case of geometric rough paths, the previous remark points to an alternative
(analytic) construction of the translation operator, first defined on a smooth path X identified
with its full lift X ≡ (1, X1, X2, ...), and subsequently extended to geometric rough paths by
continuity. We stick to the case of one Lie polynomial v0 = v = (v1, v2, ...vN ) which we want to
add at constant speed to X. At level 1, obviously (TvX)1

s,t = X1
s,t + (t − s)v1 and (TvX) is a

Lipschitz path (a 1-rough path). We then perturb the canonically obtained (extended) 2-rough
path which in turn we can perturb on the second level by adding (t − s)v2, thereby obtaining
a (non-canonical) 2-rough path. Iterating this construction allows us to “feed in, level-by-level”
the perturbation v until we arrive at a rough path TvX with regularity α-Höl∧ (1/N). We leave
it to the reader to check that this construction yields indeed TvX. The severe downside of this
construction is that it’s restricted to geometric rough paths, not to mention its repeated use of
the (analytic) extension theorem, in a situation that is within reach of purely algebraic methods.
Remark 2.5.4. The condition on X in equation (2.16) is very natural and arises by “colifting” a
Lipschitz path X0 with a d-dimensional α-Hölder weakly geometric rough path. Moreover, this is
a special case of a weakly geometric (p, q)-rough path (see [FV10, Section 9.4] with the definition
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of a path of “finite mixed (p, q)-variation” in [FV10, Definition 9.19]), and the statement can
readily be extended to this general setting. One can also make a statement about the continuity
of the maps (v,X) ↦→ TvX and (v,X) ↦→MvX in suitable rough path topologies. However these
points will not be explored here further.
Remark 2.5.5. The proof of Theorem 2.5.1 part (i) will reveal that the only properties required
of Tv (resp. Mv) are that it is an algebra homomorphism, preserves group-like (or equivalently
primitive) elements, is upper-triangular (increases grading), and that it increases the grade of
every word of length k (resp. forest with k nodes) to at most Nk. While already the first of these
conditions uniquely determines Tv once Tv(ei) = ei + vi is chosen, we emphasise that without
demanding that Mv is a pre-Lie algebra homomorphism, there is freedom to how Mv can be
extended to satisfy these properties even after Mv(•i) = •i + vi is chosen.

In general, different choices of Mv will give rise to different branched rough paths Mv(X).
There is a notable exception to this, which is when X is the canonical lift of a Lipschitz (or
more generally α-Hölder, α ∈ (1/2, 1]) path in R1+d. Then for every algebra homomorphism
M : H∗ → H∗ such that M•i = Mv•i = •i + vi, it holds that MX = MvX. Indeed, in this case
X is necessarily in the image of G(R1+d) ⊂ T ((R1+d)) under the embedding (2.6), and since M
and Mv agree on the generators •i, it follows that MX = MvX (this discussion relates of course
to the final point of Theorem 2.5.1 part (ii), where upon demanding additional structure on X,
we see that all maps M satisfying the specified properties agree on X).
Remark 2.5.6. Observe that the level-N lift of a weakly geometric rough path is precisely the
solution to the linear RDE

dYt = L(Yt)dXt, Y0 = 1 ∈ TN (R1+d),

where L = (L0, . . . , Ld) are the linear vector fields on TN (R1+d) given by right-multiplication
by (0, . . . , d) respectively. In much the same way, the level-N truncation of the translated path
Yt := πN (TvXt) is the solution to the modified linear RDE

dYt = Lv(Yt)dXt, Y0 = 1 ∈ TN (R1+d),

where now Lv = (L0+v0 , . . . , Ld+vd
) are given by right-multiplication by (0 + v0, . . . , d + vd)

(which is a special case of the upcoming Theorem 2.5.10).
We note however that the same conclusion does not hold for branched rough paths. Indeed,

even the level-N lift of a branched rough path X, N ≥ ⌊1/α⌋, is in general not the solution of a
linear RDE driven by X, which can easily be seen from the fact that linear RDEs are completely
determined by the values ⟨Xs,t, τ⟩ where τ ranges over all linear trees τ = [. . . [•i1 ]•i2

. . .]•im

(see, e.g., [HK15, Example 3.11]). A simple example is any branched rough path X for which
⟨X, τ⟩ = 0 for all linear trees τ (e.g., the 1

3 -Hölder branched rough path for which ⟨Xs,t, τ⟩ = t−s
for some τ = [•i•j ]•k

and zero for every other tree τ of size |τ | ≤ 3), so that every linear RDE
driven by X is constant.

Proof of Theorem 2.5.1. (i) We are required to show that

1. TvX takes values in G(R1+d),

2. Chen’s relation (TvX)s,t • (TvX)t,u = (TvX)s,u holds, and

3. the analytic condition (2.15).

The first two properties follow immediately from the analogous properties of X and the fact that
Tv

⃓⃓
G(R1+d) : G(R1+d)→ G(R1+d) is group homomorphism. To verify the final property, fix a word
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w ∈ T (R1+d). It readily follows from Proposition 2.2.5 and Remark 2.2.6 that T ∗
vw =

∑︁
i λiwi

where λi ∈ R and wi is a word which satisfies N |wi| ≥ |w|. However

|⟨Xs,t, wi⟩| ≤ ||X||α-Höl;[s,t] |t− s|
α|wi|,

and thus
|⟨(TvX)s,t, w⟩| = |⟨Xs,t, T

∗
vw⟩| ≤ C ||X||α-Höl;[s,t] |t− s|

α|w|/N

with C depending only on w and (polynomially) on v. It follows that TvX is indeed a α/N -Hölder
rough path, and the desired estimate (2.15) follows by running over all w with |w| ≤ ⌊N/α⌋.
The proof for the case of branched rough paths is identical, using now Proposition 2.3.14.

The proof of the first statement of (ii) is virtually the same, except we now observe that
Proposition 2.2.5 and the condition v = v0 ∈ g≤N (Rd+1) imply that T ∗

vw =
∑︁

i λiwi where
λi ∈ R and wi is a word which satisfies

N |wi|0 + (|wi| − |wi|0) ≥ |w|.

The first statement of (ii) now follows from (2.16), and the proof for the case of branched rough
paths is again identical.

To show the last point of (ii), consider the subspace Hk(Rd)⊕ ⟨•0⟩ ⊂ Hk spanned by •0 and
all forests τ ∈ Hk without a label 0. Observe that it suffices to show that for every k ≥ 0, the
level-k truncation πkX takes values in the subalgebra of Hk generated by Hk(Rd)⊕ ⟨•0⟩.

To this end, consider the space C̃∞ defined as the collection of all piecewise smooth paths
x : [0, T ] → Gk for which ẋ ∈ Hk(Rd) ⊕ ⟨•0⟩ (so that in fact ẋ ∈ Bk(Rd) ⊕ ⟨•0⟩). For every
partition D = (t0, . . . , tm) ⊂ [0, T ], we can construct xD ∈ C̃∞ as the piecewise geodesic path (for
the Riemannian structure of Gk) whose increment over [ti, ti+1] is exp(πBk(Rd)⊕⟨•0⟩ log Xti,ti+1).
One can verify that condition (2.16) guarantees that xD → πkX uniformly as |D| → 0. The
conclusion now follows since, by construction, xD takes values in the subalgebra generated by
Bk(Rd)⊕ ⟨•0⟩.

2.5.2 Effects of translations on RDEs
Throughout this section, we assume that f = (f0, . . . , fd) is a collection of vector fields on Re

which are as regular as required for all stated operations and RDEs to make sense.
Observe that f induces a canonical map from g≤N (Rd+1) to the space of vector fields Vect(Re)

which extends the map i ↦→ fi. Write fu for the image of u ∈ g≤N (Rd) under this map, e.g.,
for u = [1, 2], we have the vector field f[1,2] := [f1, f2]. Given a collection v = (v0, . . . , vd) ⊂
g≤N (Rd+1), we write

fv = (fv
0 , . . . , f

v
d ) = (f0+v0 , . . . , fd+vd

).

Similarly, f induces a canonical map from BN to Vect(Re) which extends •i ↦→ fi using
the pre-Lie product ▶ on Vect(Re) (recall from Example 2.3.5 that in coordinates

(︁
f i∂i

)︁
▶(︁

gj∂j

)︁
:=
(︁
f i∂ig

j
)︁
∂j). Once more write f̂u for the image of u ∈ BN under this map, e.g., for

u = [•1]•2
= •1 ↷ •2, we have the vector field

f̂•1↷•2 = f̂[•1]•2
:= f1 ▶ f2

Again given a collection v = (v0, . . . , vd) ⊂ BN , we write

fv = (fv
0 , . . . , f

v
d ) = (f̂•0+v0 , . . . , f̂•d+vd

).
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Furthermore, for h := fv = (fv
0 , . . . , f

v
d ), put f̂v

u := ĥu.
Now, to cite an argument from the original formulation of the proof of Theorem 2.5.10 in

the publication [BCFP19, Proof of Theorem 38], assuming for a moment that the vector fields
fi are all smooth, both x ↦→ f̂v

x and x ↦→ f̂Mvx constitute pre-Lie homomorphisms from B to the
smooth vector fields on Re with f̂v

•i
= f̂•i+vi

= f̂Mv•i
for all i, and thus due to the universal

property of the free pre-Lie algebra, we must in fact have

f̂v
x = f̂Mvx (2.17)

for all x ∈ B. Then, going back to the situation where we only assume all the fi to be ⌊N/α⌋− 1
times continuously differentiable, we realise that Equation (2.17) stays valid for x ∈ B≤⌊1/α⌋, as
it only depends on the pre-Lie identity for the vector field product ▶ which continues to hold as
long as we only form ▶ products which are well-defined given the regularity assumption for the
fi.
Remark 2.5.7. The map u ↦→ f̂u is closely related to the notion of elementary differentials in
B-series [CEM11, Section 10] and has already been used to study solutions of branched RDEs
in the works of Cass–Weidner [CW17, Section 5] and Hairer–Kelly [HK15, Section 3.2 ff.] (note
also that our notation f̂u agrees with that of [?, []ection 3]HairerKelly15, except that they denote
by fu what we denote by f̂u in this thesis).
Remark 2.5.8. Treating g≤N (Rd+1) (resp. BN ) as a nilpotent Lie (resp. pre-Lie) algebra, the map
considered above is not in general a Lie (resp. pre-Lie) algebra homomorphism into Vect(Re).

Let us now look at a rough differential equation (RDE) of the form

dY = f(Y )dX + g(Y )dZ. (2.18)

We need the definition of another linear map b : T (Rd+1)→ B(Rd+1),

b(e) := 0, b(i) := •i, b(iw) := •i ↷ b(w).

Definition 2.5.9. For the purpose of this chapter, denote a continuous path Y : [0, T ]→ Re an
RDE solution to the Equation (2.18) driven by an α-Hölder weakly geometric rough path X and
a Lipschitz continuous path Z : [0, T ] → Rm (very often m = 1 and Z is just time: Zt = t) if
there exists r : [0, T ]2 → Re with ∥rst∥2 ∈ o(|t− s|) such that, in accordance with the Euler RDE
estimate in e.g. [FV10, Corollary 10.15] and [HK15, Proposition 5.2],

Yt − Ys =
∑︂

|w|≤⌊1/α⌋

⟨Xst, w⟩f̂b(w)(Ys) +
m∑︂

j=1
(Zj

t − Zj
s)gj(Ys) + rst,

and an RDE solution to the equation (2.18) driven by an α-Hölder branched rough path X and a
Lipschitz path Z : [0, T ]→ Rm if there exists r : [0, T ]2 → Re with ∥rst∥2 ∈ o(|t− s|) such that,
in accordance5 with the Euler RDE estimate derived in [HK15, Proposition 3.8],

Yt − Ys =
∑︂

|τ |≤⌊1/α⌋

⟨Xst, τ⟩f̂τ (Ys) +
m∑︂

j=1
(Zj

t − Zj
s)gj(Ys) + rst.

5see also the formal series [BCE20, Equation (2)], where a slightly different but isomorphic definition (actually
the original one from [CL01]) of the free pre-Lie algebra product on trees leads to a symmetry factor “σ(τ)”
appearing
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For a (1, α) weakly geometric (resp. branched) rough path X and a Lipschitz path Z : [0, T ]→ Rm,
we call Y : [0, T ]→ Re an RDE solution to Equation 2.18 if it is an RDE solution to

dY = f(Y )dX̌ + f0(Y )dX0 + g(Y )dZ

in the above sense driven by the α weakly geometric (resp. branched) rough path X̌ and the
Lipschitz path (X0, Z) : [0, T ]→ Rm+1. Here X̌ := projT ((Rd))X (resp. projH∗(Rd)X), considering
T ((Rd)) as a subalgebra of T ((Rd+1)) (resp. H∗(Rd) as a subalgebra of H∗(Rd+1)), i.e. X ↦→ X̌ is
realised by putting every word (resp. forest) containing a letter 0 (resp. label 0) in the expansion
of X to zero.

Theorem 2.5.10 (cf. [Sus91, Theorem 1], [FO09, Theorem 2]). (i) Let notation be as in The-
orem 2.5.1 part (i). Then Y is an RDE solution to

dY = f (Y ) d (TvX) + g(Y )dZ (resp. dY = f (Y ) d (MvX) + g(Y )dZ)

if and only if Y is an RDE solution to

dY = fv (Y ) dX + g(Y )dZ (resp. dY = f̂v (Y ) d (MvX) + g(Y )dZ)

(ii) Let notation be as in Theorem 2.5.1 part (ii). Then Y is an RDE solution to

dY = f (Y ) d (TvX) + g(Y )dZ (resp. dY = f (Y ) d (MvX) + g(Y )dZ)

if and only if Y is an RDE solution to

dY = fv(Y )dX + g(Y )dZ ≡ f (Y ) dX + fv0 (Y ) dX0 + g(Y )dZ
(resp. dY = fv(Y )dX + g(Y )dZ ≡ f(Y )dX + f̂v0(Y )dX0 + g(Y )dZ).

Lemma 2.5.11. For any u ∈ g(Rd+1) and any x ∈ T≥1(Rd+1) (the space of non-empty words),
we have

b(u • x) = b(u) ↷ b(x).

Proof. We proceed by induction over the length of u. For u a letter, the statement holds by
definition of b. Assume the statement holds for all u of length n. Then, to check it for all
homogeneous Lie elements of word length n+ 1, since left bracketings span the free Lie algebra,
it suffices to look at Lie elements of the form [u, i]. So,

b([u, i] • x) = b(u • i • x)− b(i • u • x) = b(u) ↷ (b(i) ↷ b(x))− b(i) ↷ (b(u) ↷ b(x))
= [b(u), b(i)]⋆ ↷ b(x) = b([u, i]) ↷ b(x).

In particular, b restricted to g(Rd+1) is the unique Lie homomorphism from the free Lie
algebra to the free pre Lie algebra mapping i to •i, i.e. a(x) = b(x) for all x ∈ g(Rd+1), or, more
generally,

b(y) = projBa(y), (2.19)
for all y ∈ T ((Rd)), an immediate consequence of projB(τ1 ⋆ τ2) = τ1 ↷ τ2 and the fact
that projB(ζ1 ⋆ ζ2) = 0 whenever ζ1 or ζ2 is a non-tree forest. Note that b is not an algebra
homomorphism on T (Rd+1) in contrast to a. Nevertheless b is injective on the whole of T (Rd+1),
but b(T (Rd+1)) is a strict subspace of B.

For our Lie and pre-Lie vector field constructions, we have fu = f̂b(u) = f̂a(u), from which we
conclude

fv
i = fv

i = f̂
b(v)
•i = f̂

a(v)
•i (2.20)
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and

fv
u = f̂

b(v)
b(u) = f̂

a(v)
a(u)

for all u, v ∈ g(Rd+1) and the Re vector fields (fi)i sufficiently many times continuously differ-
entiable.

Corollary 2.5.12. For any v = (v0, . . . , vd) ⊂ g(Rd+1) and x ∈ T (Rd+1), we have

Mb(v)b(x) = b(Tvx).

Proof. The statement obviously holds for x the empty word or a letter. Assume it holds for a
word w. Then, using Lemma 2.5.11,

Mb(v)b(iw) = Mb(v)(•i ↷ b(w)) = (•i + b(vi)) ↷Mb(v)b(w) = b(i + vi) ↷ b(Tvw)
= b((i + vi) • Tvw) = b(Tv(iw)).

The general result follows by induction over word length and linearity.

Remark 2.5.13. Since the space of weakly geometric rough paths embeds into the space of
branched rough paths using the map (2.6), the statements in Theorem 2.5.10 for weakly ge-
ometric rough paths are a special case of those for branched rough paths. Indeed, for a weakly
geometric rough path X and its branched rough path aX we have for all n and all collections
of Cn−1 Re-vector fields (fi)i=0...d, through Equation (2.19) and the fact that a preserves the
grading, cf. [HK15, Section 5.1]

∑︂
|τ |≤n

⟨aXs,t, τ⟩f̂τ =
∑︂

|τ |≤n

⟨Xs,t, a
⊤(τ)⟩f̂τ =

∑︂
w

∑︂
|τ |≤n

⟨Xs,t, w⟩⟨a⊤(τ), w⟩f̂τ

=
∑︂

|w|≤n

⟨Xs,t, w⟩
∑︂

τ

⟨τ , a(w)⟩f̂τ =
∑︂

|w|≤n

⟨Xs,t, w⟩
∑︂

τ

⟨τ , b(w)⟩f̂τ

=
∑︂

|w|≤n

⟨Xs,t, w⟩f̂b(w).

We make a distinction between the two cases only for clarity.

Proof of Theorem 2.5.10. For clarity, we first prove the statement for weakly geometric rough
paths and then generalise to branched rough paths (although by Remark 2.5.13, it suffices to
prove the statement only in the branched case).

For all x ∈ T (Rd+1), we have, by Equation (2.17) and Corollary 2.5.12,

∑︂
w

⟨x,w⟩f̂b(v)
b(w) = f̂

b(v)
b(x) = f̂Mb(v)b(x) = f̂b(Tvx) =

∑︂
w

⟨Tvx,w⟩f̂b(w).

Thus, for any continuous Y : [0, T ] → Re, with h = (h0, . . . , hd) := (fv
0 , . . . , f

v
d ) = fv, using
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Equation (2.20),∑︂
|w|≤⌊1/α⌋

⟨Xs,t, w⟩ĥb(w)(Ys) =
∑︂

|w|≤⌊1/α⌋

⟨Xs,t, w⟩f̂b(v)
b(w)(Ys)

=
∑︂

w

⟨proj≤⌊1/α⌋Xs,t, w⟩f̂b(v)
b(w)(Ys)

=
∑︂

w

⟨Tvproj≤⌊1/α⌋Xs,t, w⟩f̂b(w)(Ys)

=
∑︂

w

⟨proj≤⌊N/α⌋TvXs,t, w⟩f̂b(w)(Ys) +Rst

=
∑︂

|w|≤⌊N/α⌋

⟨TvXs,t, w⟩f̂b(w)(Ys) +Rst,

where the 2-norm of the Re vector

Rst =
∑︂

|w|≤⌊N/α⌋

⟨Tvproj≤⌊1/α⌋Xs,t − TvXs,t, w⟩f̂b(w)(Ys)

=
∑︂

|w|≤⌊N/α⌋

⟨proj>⌊1/α⌋Xs,t, T
∗
vw⟩f̂b(w)(Ys)

is uniformly bounded by C|t− s|γ for some constant C > 0, with γ the smallest integer multiple
of α strictly greater than one, since X is an α-Hölder rough path, fb(w)(Ys) is a continuous
function of s bounded on the compact interval [0, T ] for any w, and

∑︁
|w|≤⌊N/α⌋ T

∗
vw is a linear

combination of a finite number of words. Thus, ∥Rst∥2 ∈ o(|t− s|), which shows the claim of the
equivalence of the two RDEs in terms of solutions Y : [0, T ]→ Re.

The branched rough path case then follows completely analogously, just that instead of∑︁
w⟨x,w⟩f̂

b(v)
b(w) =

∑︁
w⟨Tvx,w⟩f̂b(w) for all x ∈ T (Rd+1), we now use

∑︁
τ ⟨x, τ⟩f̂v

τ =
∑︁

τ ⟨Mvx, τ⟩f̂τ

for all x ∈ H(Rd+1) which we already saw in Equation (2.17).
Considering now the setup of a (1, α) branched rough path X,∑︂

|τ |≤1/α

⟨X̌s,t, τ⟩f̂τ (Ys) + (X0
t −X0

s )f̂•0+v0(Ys)

=
∑︂

|τ |≤1/α

⟨Xs,t, τ⟩f̂v
τ (Ys) +Rst

=
∑︂

|τ |≤N∨1/α

⟨MvXs,t, τ⟩f̂τ (Ys) +R′
st

=
∑︂

|τ |≤N∨1/α

⟨projH∗(Rd)MvXs,t, τ⟩f̂τ (Ys) + (X0
t −X0

s )f0(Ys) +R′′
st,

where the first and last equality hold as any tree other than •0 involving a label 0 corresponds to
a rough path entry of order ≤ |t− s|1+1/α and the second equality holds as now (Mvproj≤1/α −
projN∨1/αMv)Xst is of order ≤ |t− s|γ for some γ > 1.

We proceed along the same lines for a (1, α) weakly geometric rough path.

Remark 2.5.14. Recall that Mv : B∗ → B∗ was constructed, from Section 2.3.2.2 on, as a pre-Lie
algebra homomorphism. This matters in part (i) of Theorem 2.5.10 above, where this property
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is needed to obtain a universal conversion formula for translated RDEs. For example, consider
that Mv was replaced by an algebra homomorphism M (which satisfies the conditions of Remark
2.5.5) such that M(•i) = •i for all i = 0, ..., d, but acted non-trivially on some higher order trees
(so that M is not a pre-Lie homomorphism). Then given vector fields f , in general there does
not exist another collection of vector fields fv such that for every branched rough path X, the
RDE driven by M(X) along vector fields f agrees with the RDE driven by X along fv. Indeed, if
such fv existed, then for every weakly geometric (branched) rough path X (so that M(X) = X),
the RDEs driven by M(X) and X agree without the need to change the vector fields f , so that
necessarily fv = f . However if X is a non-geometric branched rough path, the RDE driven by
M(X) along vector fields f will not in general agree with the RDE driven by X along f .

2.6 Link with renormalization in regularity structures
We now recall several notions from the theory of regularity structures and draw a link between
the map δ from Section 2.3.3 and the coproduct ∆− associated to negative renormalization in
[BHZ19, Section 4 ff.] and [Hai16, Section 2 and 3]. In particular, we demonstrate how negative
renormalization maps on the regularity structure associated to branched rough paths carry a
natural interpretation as rough path translations (see Theorem 2.6.10 below).

2.6.1 Regularity structures
Regularity structures usually deal with (e.g. SPDE solutions) u = u(z) where z ∈ Rn (e.g. space-
time), u takes values in R (or Re). Equations further involve a β-regularizing kernel, and there
are d sources of noise, say ξ1, ..., ξd, of arbitrary (negative) order αmin, as long as the equation
is subcritical.

2.6.1.1 Generalities

We review the general (algebraic) setup in the case n = 1, β = 1 and αmin ∈ (−1, 0).

In the spirit of Hairer’s formalism, consider the equation

u(t) = u(0) +
(︄
K ∗

d∑︂
i=1

fi(u(·))ξi(·)
)︄

(t), t ∈ R, (2.21)

where u(t) is a real-valued function for which we solve, ξi(t) are driving noises, fi are smooth
functions on R (one could readily extend to the case that u takes values in Re and fi are vector
fields on Re), and K is a kernel which improves regularity by order β = 1.
Remark 2.6.1. The example to have in mind here is K(s) = exp(−λs)1s>0, which allows to
incorporate an additional linear drift term (“−λudt”), or of course the case λ = 0, i.e. the
Heaviside step function, which leads to the usual setting of controlled differential equations.
We shall indeed specialize to the Heaviside case in subsequent sections, as this simplifies some
algebraic constructions and so provides a clean link to rough path structures. For the time being,
however, we find it instructive to work with a general 1-regularizing K, as this illustrates the need
for polynomials decorations as well as symbols Jk, representing k-th derivatives of the kernel.

Our driving noises ξi(t) should be treated as distributions on R of regularity Cα−1 for some
α ∈ (0, 1) (which will later correspond to the case of α-Hölder branched rough paths). In the
case that α ≤ 1/2, due to the product fi(u)ξi, (2.21) is singular and thus cannot in general
be solved analytically. However, the equation is evidently sub-critical in the sense of [Hai14,
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Assumption 8.3] if we for the moment assume that the vector fields fi are polynomial maps ,
and so one can build an associated regularity structure.

Introducing the symbols

We first collect all the symbols of the regularity structure required to both solve (2.21) and
to form a set of symbols which is stable under the renormalization maps in the sense of [BHZ19,
Section 4 ff.]. Define the linear space

T = spanRW,

where W is the set of all rooted trees where every node carries a “polynomial” decoration
k ∈ N∪{0} and where every edge which ends on a leaf may be (but is not necessarily) assigned a
type tΞi , i ∈ {1, . . . , d}. An edge with type tΞi corresponds to the driving noise ξi. Every other
edge has a type tK which means that it is associated to the kernel K. (For now, we only assume
K is 1-regularizing, later we will take it to be the Heaviside step function.) Also, each node has
at most one incoming edge with type belonging to {1, . . . , d}.6 With regard to [BHZ19], we also
note the absence of edge decorations.7

To avoid confusion between the different meaning of trees in W and those introduced in
Section 2.3, we will color every tree in W blue. Every such tree has a corresponding symbol
representation (cf. H◦ in [BHZ19, Remark 4.16]), e.g.,

tK ↔ ↔ I, tΞi ↔ i ↔ Ξi, k
↔ Xk,

6

7 5
1 2

↔ I(I(Ξ1)I(Ξ2X
5)I(X7))X6,

where we implicitly drop the 0 decoration (↔ X0) from the nodes. It is instructive to check
that W provides an example of a structure built from a subcritical complete rule (in the sense
of [BHZ19, Section 5.2 and 5.3]) arising from the equation (2.21). Indeed, we can write down
the rule used for the construction of W as

R(Ξi) = {()}, R(I) = {([I]ℓ), ([I]ℓ,Ξi), ℓ ∈ N ∪ {0}, i ∈ {1, ..., d}}. (2.22)

The notation [I]ℓ is a shorthand notation for I, ..., I where I is repeated ℓ times.
We define a degree | · | associated to an edge type and a decorated tree. For edge types and

polynomials, we have
|Ξi| = α− 1, |I| = 1, |Xk| = k.

Then by recursion,

|I(τ)| = |τ |+ |I|,
⃓⃓⃓⃓
⃓∏︂

i

τ i

⃓⃓⃓⃓
⃓ =

∑︂
i

|τ i|.

6This rules out symbols corresponding to products of noise, such as ΞiΞj with i, j ∈ {1, . . . , d}.
7This is in contrast to, say, KPZ or Φ4

3, where edge decorations appear in view of Du → I′ or negative
renormalization, respectively.
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For a non-recursive definition see [BHZ19, Definition 5.3], where the degree is described through
a summation over all the edge types and the decorations in the tree8.
Remark 2.6.2. Remark that W ≡WBHZr (the “r” in BHZr refers to reduced, in the terminology
of [BHZ19, Section 6.4] these are trees without any extended decorations) will contain certain
symbols which do not arise if one follows the original procedure of [Hai14, Section 8.1] (which,
in some sense, is the most economical way to build the structure)9:

WHai14 ⊂ WBHZr ⊂ WBHZ.

For example, I(Ξi)I(Ξj), I(I(Ξk)), and I() ≡ I(X0) do not appear in WHai14, but all of these
appear inWBHZr. These in turn are embedded inWBHZ, a set of trees with extended decorations
on the nodes and also colourings of the nodes which give more algebraic properties. In the setting
of [BHZ19], we would work with an additional symbol 1α for α ∈ N0({Ξ1, . . . ,Ξd, I}) ∼= Nd+1

0 ,
representing an extended decoration, which provides information on some “singular” (negative
degree) tree which has been removed, and all of these extended decorations would be placed
based on the rule (2.22), see [BHZ19, Definitions 5.23 and 5.24].

Introducing T−

We define the space T− as (cf. H1 in [BHZ19, Remark 4.16])

T− = spanR {τ1 ⊙ · · · ⊙ τn, τ i ∈ W , |τ i| < 0}. (2.23)

where ⊙ is the forest product and the unit is given by the empty forest. (In other words, T− is
the free unital commutative algebra generated by elements in W of negative degree.) We now
recall that T− can be equipped with a Hopf algebra structure T− for which there exists a coaction
∆− : T → T−⊗T such that (T ,∆−) is a (left) comodule over T−. Then the action of a character
ℓ ∈ T ∗

− on x ∈ T , termed “negative renormalization”, is given by Mℓx = (ℓ⊗ id)∆−x.
Following [Hai16, page 10, in particular Equation (2.9)] we can describe the coaction ∆−

as follows. Fix a tree τ ∈ W , consider a subforest A ⊂ τ , i.e., an arbitrary subgraph of τ
which contains no isolated vertices. We then write RAτ for the tree obtained by contracting the
connected components of A in τ . With this notation at hand, we then define a linear map, the
coaction,

∆− : T → T− ⊗ T
by setting, for τ ∈ W ,

∆−τ =
∑︂

A⊂T−

A⊗RAτ . (2.24)

Unfortunately, this is not quite the correct coaction as it does not handle correctly the powers
of X. However, upon restriction to T̃ ⊂ T , as done in detail in the next section, this is precisely
the form of the coaction (now on T̃ ). When moving to a coproduct this fortunately plays no
role (since T− does not contain any non-zero powers of X or a factor of the form I()). Following
[Hai16, page 11], by abuse of notation, ∆− also acts as a coproduct, that is

∆− : T− → T− ⊗ T−. (2.25)

To be explicit, given f = τ1 · · · τn ∈ T , we have ∆−(f) = ∆−(τ1)...∆−(τn) with each ∆−(τ i) as
defined above, but with an additional projection to the negative trees on the right-hand side of
the tensor-product.

8Note that we only need one notion of degree here instead of the two | · |− and | · |+ in [BHZ19, Definition 5.3]
because we do not work with extended decorations

9WHai14 is called HF in [Hai14, Section 8.1] itself.
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Remark 2.6.3. The spaces T− ≡ T −
BHZr, T

−
BHZ and T −

Hai14 are the same in this framework (cf.
assumptions from the beginning of this subsection). Indeed, all negative trees of W have a
degree of the form Nα− 1. Then if we remove one negative subtree, of degree Mα− 1 say, from
a negative tree, we obtain a degree (N −M)α which is positive and hence the “cured” tree does
not belong to T−.

Introducing T+

In order to describe the space T+ as in [BHZ19], we need to associate to each edge a decoration
k ∈ N ∪ {0} viewed as a derivation of the kernels or the driving noises. Such a decoration does
not appear in T . Thus we will replace the letter I by J in this context. We do not give any
graphical notation for Jk, the edge with type tK and (edge) decoration k representing K(k),
because these symbols ultimately will not appear in our context.

We define T+ as the linear span of (cf. Ĥ2 in [BHZ19, Remark 4.16])

{Xk
n∏︂

i=1
Jki

(τ i) | k, n ∈ N ∪ {0}, ki ∈ N ∪ {0}, τ i ∈ W , |τ i|+ 1− ki > 0}.

In other words, T+ is the free unital commutative algebra generated by

W+ := {X} ∪ {Jkτ | τ ∈ W , |τ |+ 1− k > 0}.

We use a different letter J to stress thatW is different fromW+. The use of this letter is viewed
in [BHZ19] as a blue colouration of the root, see Section 4.3 there. We also define the degree of
a term

τ = Xk
n∏︂

i=1
Jki(τ i) ∈ T+, |τ | = k +

n∑︂
i=1

1− ki + |τ i|.

The space T+ is used in the description of the structure group associated to T . More precisely,
recall that T+ can be equipped with a Hopf algebra structure for which there exists a coaction
∆+ : T → T ⊗ T+ such that (T ,∆+) is a (right) comodule over T+. Following Hairer’s survey
[Hai16, Equation (2.2) and (2.3)], the coaction

∆+ : T → T ⊗ T+ (2.26)

is given by
∆+Xi = Xi ⊗ 1 + 1⊗Xi , ∆+Ξi = Ξi ⊗ 1 , (2.27)

and then recursively by

∆+I(τ) = (I ⊗ id)∆+τ +
∑︂

ℓ∈N∪{0}

Xℓ

ℓ! ⊗ Jℓ(τ) (2.28)

and
∆+(τ τ̄) = ∆+τ ∆+τ̄ . (2.29)

The coproduct ∆+ : T+ → T+ ⊗ T+ is then defined in the same way by replacing (2.28) with

∆+Jk(τ) = (Jk ⊗ id)∆+τ +
∑︂

ℓ∈N∪{0}

Xℓ

ℓ! ⊗ Jk+ℓ(τ),

in which ∆+τ is understood as the coaction ∆+ : T → T ⊗ T+.
Then the action of a character g ∈ T ∗

+ on x ∈ T , termed “positive renormalization”, is given
by

Γgx = (id⊗ g)∆+x.
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Remark 2.6.4. The space T+ ≡ T +
BHZr depends strongly on the space W. We have

T +
Hai14 ⊂ T

+
BHZr ⊂ T

+
BHZ.

These two inclusions are Hopf subalgebra inclusions. Indeed, as proved in [BHZ19, Section 6.4],
the second one, with T+ equipped with coproduct ∆+ is a Hopf subalgebra inclusion (with ∆+

BHZ
found in [BHZ19, Proposition 4.17 and Corollary 5.32]). The same is also true for T +

Hai14. The key
point for the Hopf algebra structure is thatthe symbols defined in [BHZ19, Section 5] are obtained
by a “complete rule” which guarantees the invariance under ∆+, see [BHZ19, Lemma 5.28]. Note
that T +

Hai14 is called “H+
F ” in [Hai14] itself, which is shown to be stable under ∆+ in Lemma 8.22

there. In the case of T +
BHZ, we use the degree | · |+ which is exactly | · | when we restrict ourselves

to T +
BHZr.

Remark 2.6.5. Unfortunately, there is a problem here in that, with the definition in equa-
tion (2.28), a desirable cointeraction between ∆+ and ∆− fails as we shall explain momentarily.
The “official” remedy, following [BHZ19, Sections 4 and 5], is to use the extended decorations
through another degree | · |+ which takes into account these decorations and behaves the same
as | · | for the rest. For example, one has |I(1βτ)|+ = |τ |+ + 1 + β. The “correct” coaction ∆+

(see [BHZ19, Proposition 4.17]) then also involves these extended decorations. The extended
decorations are crucial in [BHZ19, Theorem 5.37] for obtaining a cointeraction between the two
Hopf algebras (T+,∆+) and (T−,∆−):

M(13)(2)(4) (︁∆− ⊗∆−)︁∆+ =
(︁
id⊗∆+)︁∆−

whereM(13)(2)(4) is given asM(13)(2)(4) (τ1 ⊗ τ2 ⊗ τ3 ⊗ τ4) = (τ1 ⊙ τ3)⊗ τ2⊗ τ4. This identity
is both true on T through the comodule structures and on T+ when the coproduct ∆− is viewed
as an action on T+. We have already came across something similar in Lemma 2.3.15, but in
that case the maps involved were not really coproducts. In our simple framework, this property
is not satisfied if we just consider the reduced structure. One can circumvent this issue with-
out introducing extended decorations by changing the coproduct ∆+ to the form (2.30) given
below. This approach is possible in our context (specifically, minimal degree α − 1 > −1 and
1-regularizing kernel) because we know a priori that each edge type I in the elements of W with
negative degree has the same “Taylor expansion” of length 1 in (2.28) (ℓ = 0). In general, we
would use the extended decorations to maintain this property, however, in the specific setting of
the Heaviside kernel, to which we will specialize from this moment on to the rest of the chapter,
we can just fix the length in the coproduct and not use the extended decorations. That is, we
can get away by replacing (2.28) with the same formula, but only keeping ℓ = 0 in the sum.
Specifically, with J ≡ J0 this amounts to make the (recursive) definition of ∆+ with (2.28)
replaced by

∆+I(τ) = (I ⊗ id)∆+τ + 1⊗ J (τ). (2.30)

We can also get rid of colours when we have no derivatives on the edges at the root: if we want
to extract from I(τ1Ξi)I(τ2Ξj) all the negative subtrees, we observe that it is not possible to
extract one at the root, and thus are only left with negative subtrees in τ1Ξi and τ2Ξj , which
ensures that

MℓI(τ1Ξi)I(τ2Ξj) = I (Mℓ (τ1Ξi)) I (Mℓ (τ2Ξj)) .

In the setting of [BHZ19], this multiplicativity property is encoded by a blue colour at the root
which avoids the extraction of a tree containing the root, see Remark 4.15 there.
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2.6.1.2 The case of rough differential equations

As in the last subsection: n = 1, β = 1 and noise degree αmin ∈ (−1, 0) > −1. We further
specialize the algebraic set in that no symbols Jk and polynomials Xk with k > 0 are required in
describing T+.

Assuming K to be the Heaviside step function, all derivatives (away from the origin) are zero,
hence there is no need (with regard to W) to have any polynomial symbols (Xk with k > 0).
Removing these from W leaves us with W̃ ⊂ W which we may list as

W̃ = {Ξi, ..., I(Ξi)I(Ξj)Ξk, ..., 1, I(Ξi), I(Ξi)I(Ξj), ...
..., I(I(Ξi)I(Ξj)Ξk), I(I(Ξi)I(Ξj)), ..., I()I(), I(I()), ...},

(2.31)

(all indices are allowed to vary from 1, ..., d), with associated degrees |τ | as follows:10

α− 1, ..., 3α− 1, ...., 0, α, 2α, ... ..., 3α, 2α+ 1, ...., 2, 2, ...

As in the case of W, elements of W̃ can be viewed as rooted trees, but without node decorations.
For instance,

i j

k ↔ I(Ξi)I(Ξj)Ξk,

i j

k

↔ I(I(Ξi)I(Ξj)Ξk),

are trees (↔ symbols) contained inW, and also inWHai14, the symbols arising in the construction
of [Hai14, Section 8.1], whereas

↔ I()I(), ↔ I(I()),

i j

↔ I(Ξi)I(Ξj),

i j

↔ I(I(Ξi)I(Ξj)),

are contained in W, following the above construction taken from [BHZ19], in order to obtain
stability under the negative renormalization maps (but not included in WHai14.)

A linear subspace of T = spanRW is then given by

T̃ := spanR W̃. (2.32)

Symbols for negative renormalization

Recall that, thanks to β = 1, noise degree α− 1 ∈ (−1, 0), no terms X,X2 or I(), ... arise as
symbol in W− := {τ ∈ W | |τ | < 0}. (As a consequence, replacing W by WHai14, W̃ or WBHZ in
the definition of the negative symbols makes no difference.) In particular,

W− = {Ξi, I(Ξi)Ξj , ..., I(Ξi)I(Ξj)Ξk, ...}.

10tacitly assuming α < 1/3
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(where W− “ends” right before the element 1 in (2.31) above) contains no powers of X, (hence
no need to introduce “W̃−”). As previously defined (see (2.23)), we have

T− = free unital commutative algebra generated by W−.

For instance, writing ⊙ for the (free, commutative) product in T−,

2Ξi −
1
3Ξi ⊙ Ξj + I(Ξi)Ξj ⊙ (I(Ξi)I(Ξj)Ξk)⊙2 ∈ T−.

Interpreting ⊙ as the forest product, elements in T− can then be represented as linear combina-
tions of forests, such as

2 i − 1
3

i j +

i

j

i j

k

i j

k

One can readily verify that ∆− : T → T− ⊗ T restricted to T̃ maps T̃ → T− ⊗ T̃ , also denoted
by ∆− so that (T̃ ,∆−) is a subcomodule of (T ,∆−).

Symbols for positive renormalization and T+.
Recall that T+ was generated, as a free commutative algebra, by

W+ := {X} ∪ {Jkτ | τ ∈ W , |τ |+ 1− k > 0}.

Writing J ≡ J0 as usual, we define a subset W̃+ ⊂ W+ as follows

W̃+ := {J τ | τ ∈ W̃} (2.33)
= {1,J (Ξi),J (I(Ξi)Ξj),J (I(I(Ξi)Ξj)Ξk),J (I(Ξi)I(Ξj)Ξk), ...,J (I(Ξi)I(Ξj)), ...}

with degrees 0, α, 2α, 3α, 3α, ..., 2α+ 1, ... here.
Recall that elements in W+ can be represented by elementary trees, in the sense that -

disregarding the trivial (empty) tree 1 - only one edge departs from the root. The same is true
for elements in W̃+. Set

T̃+ := free unital commutative algebra generated by W̃+.

For example, writing τ1τ2 for the (free, commutative) product of τ1, τ2 ∈ T̃+, an example of
an element in this space would be

J (I(Ξi)Ξj) + J (I())J (1) + 3 J (Ξi)J (Ξj) + J (I(Ξi)Ξj)J (I(Ξk)Ξl) ∈ T̃+.

Fortunately, every such element can still be represented as a tree; it suffices to interpret the
free product in T+ as the “root-joining” product (which is possible since all constituting trees
are elementary). The (abstract) unit element 1 ∈ T+ is then indeed given by the (trivial) tree
• ↔ X0, where we recall our convention to drop the node decoration “0”. For instance, the above
element becomes11

i

j

+ + 3

i j

+

i

j k

l

∈ T+.

11Remark that J (1), which corresponds to the right branch of the second term, could also have been written as
J (), reflecting our convention to drop the decoration 0 from nodes (here: 1 ≡ X0). By the same logic, we could
also write I(), one of the symbols arising in W, as I(1).
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Remark 2.6.6. Though we used the same formalism to draw trees as in the case of W̃ above, the
interpretation here is slightly different in that all root-touching edges refer to J rather than I.
As mentioned before, in [BHZ19], this is indicated by a blue colouring of the root.

As before, we define a coaction of T̃+ on T̃ (which we again denote ∆+ : T̃ → T̃ ⊗ T̃+)
by (2.27), (2.29), and (2.30) as well as a coproduct ∆+ : T̃+ → T̃+⊗ T̃+ defined in the same way,
but with I changed to J in (2.30). (In contrast to the case of ∆− discussed above, it is not the
case that (T̃ ,∆+) is a subcomodule of (T ,∆+).)

We note already that (T̃+,∆+) is isomorphic to the Connes-Kreimer Hopf algebra H arising
from the identifications laid out in the following subsection (and which will be used crucially in
the proof of the upcoming Proposition 2.6.8).

2.6.2 Link with translation of rough paths
2.6.2.1 Identification of spaces

We now give a precise description the map ∆− in our context as well as its connection to the map
δ from Section 2.3.3. To do so, we first need to introduce several identifications of vector spaces
and algebras, as well as appropriately identify branched rough paths as models on a regularity
structure.

Recall the space H = H(•0, ..., •d) from Section 2.3 spanned by labelled forests with label set
{0, 1, . . . , d}. Consider now the enlarged vector space

H̃ := H⊕HΞ1 ⊕ ....⊕HΞd. (2.34)

driven by branched rough paths (c.f. [Pre16, Section 5.3.2]). With T̃ as defined in (2.32), and in
particular with noise types Ξ1, ...,Ξd, we then have a vector space isomorphism

H̃ ↔ T̃

obtained by adding an extra edge to indicate a noise Ξi, i ̸= 0, and by “forgetting” the label 0
(which is equivalent to setting the noise Ξ0 to the constant 1). For example,

1

02

↔ I [I(Ξ2)I(1)Ξ1] =

2

1

2

10

0

3

Ξ4 ↔ I [I(1)I(Ξ1)Ξ2] I [I(Ξ3)] Ξ4 =

1

2

3

4 .

Recall that B = B(•0, ..., •d) denotes the subspace of H spanned by trees, and define

B− = B−(•1, ..., •d) ⊂ B ⊂ H
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as the subspace of B spanned by trees with no label 0 and with at most ⌊1/α⌋ nodes. Observe
that there is a canonical vector space isomorphism

ϕ : B− → ⟨W−⟩ ⊂ HΞ1 ⊕ ....⊕HΞd ⊂ H̃, (2.35)

where we have used the identification H̃ ↔ T̃ ⊃ spanRW− for the first inclusion (and both

inclusions being strict: for the first, just consider the element
0

3

Ξ1 /∈ ⟨W−⟩). We denote this

isomorphism also by
τ ↦→ τ̇ := ϕ(τ).

For example,

ϕ :
3

21

↦→ I(Ξ1)I(Ξ2)Ξ3,

where we assume α ∈ (0, 1/3) so the tree appearing on the left is indeed an element in B−.
Correspondingly, the symbol on the right has negative degree as an element of W, hence is an
element of W−.

Write B∗
− for the dual of the (finite-dimensional) vector space B−. Of course, B∗

−
∼= B−

which allows us to identify B∗
− with ⟨W−⟩. Recall that (T−,⊙) was defined as the free unital

commutative algebra generated by W−, and let G− ⊂ T ∗
− denote the group of characters on T−.

By definition of T−, we then have a bijection

B∗
− ↔ G−. (2.36)

To be fully explicit about this, recall that

T− = ⟨τ̇1 ⊙ ....⊙ τ̇n : τ̇ i ∈ W−, n = 1, 2, ...⟩,

so writing τ i = ϕ−1(τ̇ i) ∈ B−, we have that associated to v ∈ B∗
− the character ℓ ∈ G− given

explicitly by the formula

ℓ(τ̇1 · .... · τ̇n) = ℓ(τ̇1)...ℓ(τ̇n) = ⟨v, τ1⟩...⟨v, τn⟩.

Define now
(H−, ·)

as the free commutative algebra generated by the subspace B− of H̃ (remark that the product
in H− has nothing to do with the product in H itself), so that there is an algebra isomorphism

H− ↔ T−.

A typical element of H− looks like:

2
Ξ1 + Ξ2 + Ξ2 ·

1

23

Ξ3,

whereas one has
2
/∈ H−.
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Note that we can also make the identification of algebras

H ↔ T̃+.

For instance, using the bracket notation,

[•0]•0 •0 +[•i]•j
[•k]•l

↔ J (I())J (1) + J (I(Ξi)Ξj)J (I(Ξk)Ξl) ∈ T̃+.

We denote by G̃+ ⊂ T̃ ∗
+ the characters on T̃+ and note that there is also a bijection G ↔ G̃+,

where we recall that G ⊂ H∗ is the Butcher group over R1+d, i.e., the set of characters on H.
To summarise, we have the following identifications in place

H̃ ↔ T̃ ,
H− ↔ T−,

H ↔ T̃+,

B∗
− ↔ ⟨W−⟩ ↔ G− ⊂ T ∗

−

G ↔ G̃+ ⊂ T̃ ∗
+ .

2.6.2.2 Renormalization as rough path translations

It now only remains to identify (a family of) branched rough paths with a class of models on a
suitable regularity structure. Define the index set A := {0} ∪ αN ∪ (αN − 1). Recall that the
action of g ∈ G̃+ on T̃ is given exactly as before by

Γgτ = (id⊗ g)∆+τ , for all τ ∈ T̃ .

Note that Γg indeed maps T̃ to itself due to the definition of G̃+. Note further that ΓgΓh (as a
composition of linear maps) is exactly Γg◦h (with ◦ the product in G̃+ given as the dual of ∆+),
and so

G := {Γg : g ∈ (G̃+, ◦)}.

is indeed a group of endomorphisms of T̃ .
Recall now the definition of a regularity structure from [Hai14, Definition 2.1] (see also Sec-

tion 1.3 of this thesis).

Lemma 2.6.7. The triplet (A, T̃ , G) is a regularity structure.

Proof. The only non-trivial property to check is that for all τ ∈ T̃ of degree α ∈ A and Γ ∈ G,
Γτ − τ is a linear combination of terms of degree strictly less than α, which in turn is a direct
consequence of the definition of ∆+ : T̃ → T̃ ⊗ T̃+ from (2.30) (see end of Section 2.6.1.2).

Recall also the definition of a model on a regularity structure (see [Hai14, Definition 2.17]
and Section 1.3 of this thesis). Let M[0,T ] denote the set of all models (Π,Γ) for (A, T̃ , G) on R
such that (cf. [Pre16, Section 5.3.2])

(i) Πt1 is the constant function 1 for all t ∈ R,

(ii) Γst = id for s, t ∈ (−∞, 0] and for s, t ∈ [T,∞),

(iii) (ΠtIy)′ = Πty for all t ∈ R and y ∈ T̃ . (Here (..)′ denotes the Schwartz derivative.).
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On the other hand, let Rα
[0,T ] be the set of all (1 + d)-dimensional α-Hölder branched rough

paths X : [0, T ]2 → G whose zeroth component is time, i.e., ⟨Xs,t, •0⟩ = t− s and

⟨Xs,t, [τ ]•0⟩ =
∫︂ t

s

⟨Xs,u, τ⟩du, for all τ ∈ H, s, t ∈ [0, T ]. (2.37)

Observe that this condition necessarily implies that X satisfies condition (2.16) from Theo-
rem 2.5.1 (cf. Remark 2.5.4). Note that Xs,t can be identified with an element of G̃+ due to the
identification G ↔ G̃+,.

Finally, observe that ϕ defined in (2.35) may be extended to a vector space isomorphism

ϕ : B ↔ HΞ0 ⊕HΞ1 ⊕ ....⊕HΞd
∼= H⊕HΞ1 ⊕ ....⊕HΞd ≡ H̃ (2.38)

which maps a tree τ ∈ B into a forest ϕ(τ) ≡ τ̇ , as illustrated in the following two examples:

0
2

1

0

↔
0

2

1

Ξ0 ↔ 0
2

1

,
2

10

0

3

4

↔
2

10

0

3

Ξ4.

Conversely, ϕ−1 adds an extra node (which becomes the root) and should be thought of as taking
the integral of a symbol in H̃. The following result makes this precise by giving a bijection between
M[0,T ] and Rα

[0,T ].

Proposition 2.6.8 (cf. [Pre16, Theorem 5.15]). There is a bijective map I : Rα
[0,T ] → M[0,T ]

which maps a branched rough path X to the unique model (Π,Γ) ∈M[0,T ] with the property that

(ΠsI τ̇)(t) = ⟨Xs,t, τ⟩ for all τ ∈ B, s, t ∈ [0, T ],

where we have made the identifications ϕ(τ) ≡ τ̇ ∈ H̃ ↔ T̃ . Furthermore, the model (Π,Γ) satis-
fies Γts = ΓXs,t (where we have made the identification Xs,t ∈ G ∼= G̃+) and the multiplicativity
property

Πt((Iy1) . . . (Iyn)) = Πt(Iy1) . . .Πt(Iyn), for all n ∈ N, yi ∈ T̃ . (2.39)

Proof. Consider X ∈ Rα
[0,T ]. For all s, t ∈ [0, T ] define Γts = ΓXs,t and (ΠsI τ̇)(t) = ⟨Xs,t, τ⟩

for all τ ∈ B. Observe that we may further impose on (Π,Γ) that properties (i) and (ii) hold.
Furthermore, for every τ /∈ IT̃ , we may define Πtτ = (ΠtIτ)′, which completely characterises
Π. It remains to verify (2.39), that property (iii) holds for all τ ∈ IT̃ , and that (Π,Γ) is indeed
a model.

For (2.39), note that from (2.37) we have

Πt(I τ̇1 . . . I τ̇n) = (ΠtI(I τ̇1 . . . I τ̇n))′

= (⟨Xt,·, ϕ
−1(I τ̇1 . . . I τ̇n)⟩)′

= (⟨Xt,·, [τ1 . . . τn]•0⟩)′

= ⟨Xt,·, τ1 . . . τn⟩
= ⟨Xt,·, τ1⟩ . . . ⟨Xt,·, τn⟩ = Πt(I τ̇1) . . .Πt(I τ̇n).

To show property (iii) for τ̇ = I ̇̄τ ∈ IT̃ , where ̇̄τ ∈ T̃ , observe that ϕ([τ̄ ]•0) = τ̇ , so that
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again by (2.37)

Πtτ̇ = ΠtI ̇̄τ
= ⟨Xt,·, τ̄⟩
= (⟨Xt,·, [τ̄ ]•0⟩)′

= (ΠtIϕ([τ̄ ]•0))′

= (ΠtI τ̇)′.

It remains to show that (Π,Γ) is a model. We first verify that ΠsΓs,t = Πt. Let τ ∈ B, so
that I(τ̇) ∈ T̃ . Recall that the Connes-Kreimer coproduct ∆⋆ : H → H⊗H as was introduced
in Section 2.3.1 can be defined recursively by

∆⋆[τ1 . . . τn]•i
= [τ1 . . . τn]•i

⊗1+(id⊗ [·]•i
)∆⋆(τ1 . . . τn), for all τ1, . . . , τn ∈ B, i ∈ {0, . . . , d}.

With this recursion, one can verify that

∆+ : I(T̃ )→ I(T̃ )⊗ T̃+

agrees with the “reversed” Connes-Kreimer coproduct

σ1,2∆⋆ : B → B ⊗H,

where σ1,2 : H⊗ B → B ⊗H, σ1,2 : τ ⊗ τ̄ ↦→ τ̄ ⊗ τ , and where we make the usual identification
H ↔ T̃+ as well as ϕI : B → I(T̃ ) via ϕI : τ ↦→ I(τ̇) (which is of course just I ◦ ϕ). Therefore,
treating Xs,t as a character on H ↔ T̃+, we have for all τ ∈ B

(ΠtΓtsI τ̇)(u) = (Πt(id⊗Xs,t)∆+I τ̇)(u)
= ⟨Xt,u, (ϕI)−1(id⊗Xs,t)∆+I τ̇)⟩
= ⟨Xt,u, (Xs,t ⊗ id)∆⋆τ)⟩
= ⟨Xs,t ⊗Xt,u,∆⋆τ⟩
= ⟨Xs,t •Xt,u, τ⟩
= ⟨Xs,u, τ⟩
= Πs(I τ̇)(u).

(2.40)

Observe now that for τ ∈ T̃ , we have

ΓtsIτ = IΓtsτ + ⟨Xs,t, Iτ⟩1,

where we emphasize the symbol 1 ∈ T̃ . Therefore, by the (already established) properties (i)
and (iii), it follows that for any τ ∈ T̃

ΠtΓtsτ = (ΠtIΓtsτ)′ = (Πt(ΓtsIτ − ⟨Xs,t, Iτ⟩1))′ = (ΠtΓtsIτ)′ = (ΠsIτ)′ = Πsτ ,

which shows that ΠtΓts = Πs.
It remains to verify the analytic bounds on (Π,Γ). As in Theorem 2.5.1, denote by |τ | the

number of nodes in τ and by |τ |0 the number of nodes with the label 0. It follows that the degree
of I τ̇ is given by |I τ̇ | = |τ |0(1− α) + |τ |α. Since X satisfies (2.16), we have the analytic bound

|(ΠsI τ̇)(t)| = |⟨Xs,t, τ⟩| ≲ |t− s||Iτ̇ |.
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Since Πsτ = (ΠsIτ)′ by property (iii), we see that Π satisfies the correct analytic bounds.
The exact same argument applies to Γ upon using the identification of ∆+ with σ1,2∆⋆ above.
Therefore (Π,Γ) is a model in M[0,T ] as claimed.

Finally, it remains to observe that we may reverse the construction. Indeed, starting with a
model (Π,Γ) in M[0,T ], we may define X by ⟨Xs,t, τ⟩ = (ΠsI τ̇)(t). The fact that X satisfies (2.37)
follows from property (iii), while the required analytic bounds for X to be an α-Hölder branched
rough path follow from the analytic bounds associated to Π. To conclude, it suffices to verify
that X thus defined satisfies Γts = ΓXs,t

and Xs,t • Xt,u = Xs,u. To this end, note that by
definition of the structure group G, there exists γts ∈ G̃+ ∼= G such that Γts = (id ⊗ γts)∆+.
Let X̃s,t ∈ G be the element associated to γts in the identification G̃+ ∼= G, and we aim to show
X̃s,t = Xs,t. Indeed, from our identification H ↔ T̃+, it follows that for all τ ∈ B

⟨γts,J τ̇⟩ = ⟨X̃s,t, τ⟩.

On the other hand, we know that for all τ ∈ B

⟨Xs,t, τ⟩ = (ΠsI τ̇)(t) = (ΠtΓtsI τ̇)(t) = (Πt(id⊗ γts)∆+I τ̇)(t) = ⟨γts,J τ̇⟩,

where for the last equality we have used property (i) and the fact that

∆+I τ̇ = 1⊗ J τ̇ +
∑︂
I(τ̇ (1))⊗ τ̇ (2),

where every term I(τ̇ (1)) is of positive degree, and so (ΠtI(τ̇ (1)))(t) = 0. This concludes the
proof that Γts = ΓXs,t

. To verify that Xs,t•Xt,u = Xs,u, we can now simply reorder the sequence
of equalities (2.40).

Following [BHZ19, Equation (6.18)] we introduce the renormalization map Mℓ given by12

Mℓ : T̃ → T̃ , τ ↦→ (ℓ⊗ id) ∆−τ ,

for a given character ℓ ∈ G− ⊂ T ∗
− . In our case, we have the fact that Mℓ commutes with I (cf.

end of Remark 2.6.5)
MℓI = IMℓ, (2.41)

which is readily verified by hand: I amounts to adding another edge to the root (thereby creating
a new root), whereas Mℓ amounts to extracting (negative) subtrees and mapping them to R (via
ℓ). Clearly, the afore-mentioned edge (of degree 1) can not possibly be part of any singular
subtree, hence the desired commutation.

This map acts on a model Π = (Π,Γ) and yields the renormalised model (see [BHZ19,
Theorem 6.16]) given by

ΠMℓ
s := ΠsMℓ, ΓMℓ

t,s =
(︂

id⊗ γMℓ
t,s

)︂
∆+, γMℓ

t,s = γt,sMℓ.

Recall from Section 2.3.3 the map δ : B → A ⊗ B, where A is the free commutative algebra
generated by B (thought of as an isomorphic but different space to H). Recall also the (vector
space) isomorphism ϕ : τ ↦→ τ̇ as detailed in (2.38) with which we identify H̃ ∼= B. Let π− :
H̃ ∼= B → B− ∼= ⟨W−⟩ denote the projection onto terms of negative degree, which we extend
multiplicatively to an algebra homomorphism π− : A → H−. We now define the map

δ− = (π− ⊗ id)δ : H̃ → H− ⊗ H̃.
12While we deliberately used the same letter, do not confuse Mℓ : T̃ → T̃ with Mv : H∗ → H∗.
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For instance
δ−•0 = 1⊗ •0,

whereas
δ•0 = •0 ⊗ •0 + 1⊗ •0.

We are now ready to state the link between translation of branched rough paths and negative
renormalization in the following two results.
Lemma 2.6.9. (i) For all τ ∈ B it holds that

∆−τ̇ = ∆−ϕ (τ) = (ϕ⊗ ϕ) δ− (τ) .

(ii) Let v be an element of B∗
− and let ℓ ∈ G− by the associated element in G− ⊂ T ∗

−, as was
detailed in (2.36). Then

Mℓτ̇ = Mℓϕ (τ) = ϕ (M∗
v τ)

Proof. (i) Let us consider [τ ]•i
∈ B. We then have the following identities:

∆−ϕ([τ ]•i
) = ∆−τΞi =

∑︂
C=A·B⊂τ

(C ⊗ (RCτ)Ξi +A ·BΞi ⊗RCτ) . (2.42)

The sum is taken over all the couples (A,B) where A is a negative subforest of τ which does not
include the root of τ and B is a subtree of τ at the root disjoint from A. In the sum in (2.42), the
first term means that Ξi does not belong to the tree extracted at the root, while for the second
term, Ξi belongs to the tree which comes from the product between Ξi and B giving a subtree
of negative degree. One can derive the same identity for δ−. We first rewrite δ−:

δ−τ =
∑︂
A⊂τ

A⊗ R̃Aτ ,

where A is a subforest of τ and R̃Aτ means that we contract the trees of A in τ and we leave a
0 decoration on their roots. Then the equivalent of (2.42) in that context is given by:

δ−[τ ]•i
=

∑︂
C̃=Ã·B̃⊂τ

(︂
C̃ ⊗ [R̃C̃τ ]•i

+ Ã · [B̃]•i
⊗ R̃Ã·[B̃]•i

[τ ]•i

)︂
(ϕ⊗ ϕ) δ−[τ ]•i

=
∑︂

C̃=Ã·B̃⊂τ

(︂
ϕ(C̃)⊗ (R̃C̃τ)Ξi + ϕ(Ã) · B̃Ξi ⊗ ϕ

(︂
R̃Ã·[B̃]•i

[τ ]•i

)︂)︂
.

Now we have the following identifications:

ϕ(C̃)↔ C, B̃Ξi ↔ BΞi, ϕ
(︂
R̃Ã·[B̃]•i

[τ ]•i

)︂
= R̃C̃τ ↔ RCτ , (R̃C̃τ)Ξi ↔ (RCτ)Ξi,

which gives the result.
(ii) Recall that δ− (τ) has an image of the form “forest ⊗ tree”, and that ℓ ◦ ϕ = v (which

is a “dual” tree and multiplicative over forests). Also note that M∗
v τ = (v ⊗ id) δ = (v ⊗ id) δ−

whenever v ∈ B∗
− (which not true for general v ∈ B∗), so that

Mℓτ̇ = (ℓ⊗ id) ∆−τ̇

= (ℓ⊗ id) ∆−ϕ (τ)
= (v ⊗ ϕ) δ− (τ)
= ϕ

(︁
(v ⊗ id) δ−)︁

= ϕ (M∗
v τ) .
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Theorem 2.6.10. (i) It holds that the restriction ∆− : T̃ → T−⊗ T̃ coincides with δ− : H̃ →
H− ⊗ H̃, where we have made the identifications H̃ ↔ T̃ and H− ↔ T− as above.

(ii) Let v be an element of B∗
− and let ℓ ∈ G− by the associated element in G− ⊂ T ∗

−, as was
detailed in (2.36). Then the following diagram commutes

X ←→ Π
↓ ↓
MvX ←→ ΠMℓ

(iii) For v, v′ ∈ B− with associated characters ℓ, ℓ′ ∈ G−, it holds that the character associated
to v + v′ is ℓ ◦ ℓ′, so that (B−,+) ∼= (G−, ◦).

Remark 2.6.11. In view of the final statement of Theorem 2.5.1 part (ii), we see that the com-
muting diagram in (ii) holds upon replacing Mv by any algebra homomorphism M : H∗ → H∗

which preserves B∗, leaves invariant every forest without a label 0, and satisfies M•0 = •0 + v.
Remark 2.6.12. The final statement (iii) effectively says that the renormalization group associated
to branched rough paths is always abelian, despite the highly non-commutative nature of the
Grossman-Larson Hopf algebra H∗.

Proof of Theorem 2.6.10. Part (i) is a just of a reformulation of Lemma 2.6.9 (i). To verify part
(ii), in view of Proposition 2.6.8, we only need to check that for all τ ∈ B

ΠMl
s I τ̇ = ⟨MvXs,·, τ⟩ = ⟨Xs,·,M

∗
v τ⟩ .

The LHS can be rewritten as, thanks to (2.41) and Lemma 2.6.9 (ii)

ΠMℓ
s I τ̇ = ΠsMℓI τ̇

= ΠsIMℓτ̇

= ΠsIϕ (M∗
v τ) .

Applying Proposition 2.6.8 with τ̇ = ϕ (Mvτ) then shows that

ΠsIϕ (Mvτ) = ⟨Xs,·,M
∗
v τ⟩

which is what we wanted to show.
Finally, to show (iii), we note that

⟨ℓ ◦ ℓ′, τ⟩ = ⟨ℓ⊗ ℓ′,∆−τ⟩ = ⟨ℓ, τ⟩+ ⟨ℓ′, τ⟩, for all τ ∈ W−,

where the first equality follows by definition and the second from the fact that every element of
W− is primitive with respect to the coproduct ∆−. Indeed from the Remark 2.6.3, we deduce
that the coaction ∆− maps every τ ∈ W− into τ ⊗ 1 +

∑︁
(τ) τ

′ ⊗ τ ′′ such that τ ′′ is a tree of
positive degree. However, ∆− as coproduct on T− (see (2.25)), will annihilate any term with τ ′′

of (strictly) positive degree. In particular then, ∆−τ = 1⊗ τ + τ ⊗ 1 for all τ ∈ W−, that is, any
such τ is primitive.
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Chapter 3

Signatures of paths transformed
by polynomial maps

This chapter is based on the article [CP20]. Reprinted by permission from Springer Nature
Customer Service Centre GmbH: Springer Nature, Beiträge zur Algebra und Geometrie / Con-
tributions to Algebra and Geometry, Signatures of paths transformed by polynomial maps, Laura
Colmenarejo and Rosa Preiß, © The Managing Editors 2020.

3.1 Introduction
In the 1950s, K. T. Chen introduced the iterated-integral signature of a piecewise continuously
differentiable path, which up to a natural equivalence relation, determines the initial path. In
general, the signature of a path can be seen as a multidimensional time series. When the
terminal time is fixed, the signature of a path can be seen as tensors and the calculation of
the signature becomes a standard problem in data science. In [PSS19], M. Pfeffer, A. Seigal,
and B. Sturmfels study the inverse problem: given partial information from a signature, can we
recover the path? They consider signature tensors of order three under linear transformations
and establish identifiability results and recovery algorithms for piecewise linear paths, polynomial
paths, and generic dictionaries.

Coming from stochastic analysis, the signatures are becoming more relevant in other ar-
eas, such as algebraic geometry and combinatorics, and we would like to highlight some recent
work. For instance, in [DR19], J. Diehl and J. Reizenstein offer a combinatorial approach to the
understanding of invariants of multidimensional time series based on their signature. Another
reference is [AFS19], in which C. Améndola, P. Friz, and B. Sturmfels look at the varieties of
(expected) signatures of tensors for both deterministic and random paths, focusing on piecewise
linear paths, polynomial paths and (mixtures of) Brownian motion (with drift). Answering one
of their questions, in [Gal19], F. Galuppi looks at signature varieties of deterministic log-linear
rough paths, which show surprising analogies with the Veronese variety.

In stochastic analysis, the study of the signatures of paths arises in the theory of rough paths,
where [FV10, FH14] are textbook references. Iterated integrals and the non-commutative series
that encode them have also arisen in a variety of contexts in geometry and arithmetic, including
the work of R. Hain in [Hai02], M. Kapranov in [Kap09], and J. Balakrishnan in [Bal13]. The
results we derive in this chapter have the potential for future applications in all of these contexts.

Let us now present our problem and our main two results, Theorems 3.1.1 and 3.1.2.

65
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A piecewise continuously differentiable path X in Rd is a map defined by d piecewise smooth
functions Xi(t) in a parameter t ∈ [0, L], for i = 1, . . . , d. Its signature stores the collection of
all the iterated integrals of the path X, which are of the form

∫︂ L

0

∫︂ rn

0
· · ·
∫︂ r2

0
dXi1

r1
. . . dXin

rn
, (3.1)

where Xi
r := Xi(r). The iterated integral (3.1) is a real number and it is associated to the

sequence (i1, i2 . . . , in), for which the order is relevant. Therefore, we consider the signature
σ(X) as an element of T((Rd)), the space of formal power series in words in the alphabet
{1, 2, . . . , d}. This space becomes an algebra with the concatenation product, denoted by the
symbol •. Its algebraic dual, denoted by T(Rd), is the space of non-commutative polynomials in
the same set of words. It is a commutative algebra with the shuffle product, which is denoted
by � and interleaves two words in all order-preserving ways, [Reu93, Section 1.4].

We also consider the following duality paring in T((Rd))× T(Rd):

⟨︄ ∑︂
w∈Wd

aww, v

⟩︄
= av, (3.2)

where Wd denotes the set of words in the alphabet {1, . . . , d}, together with the empty word e.

Let X be a piecewise continuously differentiable path in Rd and σ(X) be its signature.
Consider a polynomial map p from Rd to Rm. One can compute the image path p(X) and ask
for its signature, σ(p(X)). Then, the following question comes up:

How are both signatures, σ(X) and σ(p(X)), related?

We approach this question from an algebraic point of view. We consider the dual map p∗ :
R[x1, . . . , xm] −→ R[x1, . . . , xd], where both sets of variables are commutative. It is natural and
common to embed the polynomial ring R[x1, . . . , xm] into the tensor algebra (T(Rm),�). For
that we identify the variable xi with the letter i and we define the embedding, denoted by φm (or
φ), by sending the monomial xi1 · · ·xil

to the shuffle product i1� · · ·�il, for 1 ≤ i1, . . . , il ≤ m,
and extending by linearity. By construction, this map is a morphism of commutative algebras,
and it is injective but not surjective. For instance, for t ≥ 2, φ(x1 ·x2) = 1�2 = 12+21 and there
is no other way to obtain the words 12 and 21 as φd(h), for any polynomial h ∈ R[x1, . . . , xd].
Therefore, we cannot find a polynomial in R[x1, . . . , xd] with image 12.

Our first step is to define a map Mp : (T(Rm),�) −→
(︁
T(Rd),�

)︁
, which is an algebra

homomorphism and whose restriction to shuffles of letters is unique in the following sense.

Theorem 3.1.1. There exists an algebra homomorphism Mp from (T(Rm),�) to
(︁
T(Rd),�

)︁
such that its restriction Mp|Im(φm) is the unique algebra homomorphism that makes the following
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diagram commute:

R[x1, . . . , xm] p∗
→→

↙ ↖

φm

↓↓

R[x1, . . . , xd]
↖↙

φd

↓↓
Im(φm)

Mp|Im(φm) →→ Im(φd)
∩ ∩

(T(Rm),�)
(︁
T(Rd),�

)︁

(3.3)

The map Mp has some further interesting properties and is the key to relate the signature of
a path with the signature of its transformation under a polynomial map.

Theorem 3.1.2. Let X : [0, L] −→ Rd be a piecewise continuously differentiable path with
X(0) = 0 and let p : Rd −→ Rm be a polynomial map with p(0) = 0. Then, for all w ∈ T(Rm),

⟨σ(p(X)), w⟩ = ⟨σ(X),Mp(w)⟩ .

Equivalently, σ(p(X)) = M∗
p (σ(X)).

The chapter is organized as follows. In Section 3.2, we introduce briefly the framework of
signatures of paths, as well as the basic notions that we need for our key combinatorial object,
the shuffle algebra on words. We also include some known results such as the shuffle identity
and Chen’s identity, and one example of how to compute some coefficients in the signature of
a particular path. In Section 3.3, we define the map Mp and prove several of its properties
in Proposition 3.3.2. Moreover, we present the proof of our main theorems, Theorems 3.1.1
and 3.1.2. We also include a generalization of the last one for those paths that do not start at
the origin, Corollary 3.3.5. In Section 3.3.1 we look at Mp as a half-shuffle homomorphism and
give a generalization of Theorem 3.1.2 in terms of Zinbiel algebras. We furthermore point out
how our work relates to a half-shuffle identity for signatures of paths, equation (3.8), which was
already mentioned in earlier literature, e.g. [GK08, right after Equation (6)]. In Section 3.4, we
also present two examples, a very particular one illustrating Theorem 3.1.2 and a more generic
one showing how we can store σ (p(X)) using a matrix that encodes the coefficients in Mp(w).
Moreover, we present some consequences where we look at polynomial paths (see Corollary 3.4.4),
paths that lie in a given variety (see Corollary 3.4.6), and the product of signatures of two
arbitrary paths (see Corollary 3.4.7). Finally, Section 3.5 is dedicated to applications and future
work.
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3.2 Signatures of paths and words
Given a piecewise continuously differentiable path X : [0, L] −→ Rd, for any i1, . . . , in ∈
{1, 2, . . . , d} the following integral is classically well-defined∫︂ L

0
dXi1 . . . dXin :=

∫︂ L

0

∫︂ rn

0
· · ·
∫︂ r2

0
dXi1

r1
. . . dXin

rn
=
∫︂ L

0

∫︂ rn

0
· · ·
∫︂ r2

0
Ẋi1

r1
. . . Ẋin

rn
dr1 . . . drn.

We would like to store the collection of all these integrals.

Definition 3.2.1. The signature of X is defined as the following formal power series

σ(X) =
∑︂
n≥0

∑︂
i1...in

∫︂ L

0

∫︂ rn

0
· · ·
∫︂ r2

0
dXi1

r1
. . . dXin

rn⏞ ⏟⏟ ⏞
∈R

·i1 · · · in ∈ T((Rd)).

As we mention in the introduction, T((Rd)) is the space of formal power series in words in the
alphabet {1, . . . , d}, and we denote by e the empty word. It is an algebra with the concatenation
product, denoted by w•v (or simply wv), which is well-defined since it respects the grading given
by the number of letters appearing in each word. We also consider its algebraic dual T(Rd),
which is the set of polynomials in words in the same alphabet. The algebra T(Rd) has the
concatenation product, which is the same as for T((Rd)) if we multiply two finite power series.
However, we consider T(Rd) as an algebra with the shuffle product, which we define recursively
as follows.

Definition 3.2.2. Let w, w1 and w2 be three words and a and b two letters. We define the shuffle
product of two words recursively by

e� w = w� e = w, and
(w1 • a)� (w2 • b) = (w1 � (w2 • b)) • a + ((w1 • a)� w2) • b.

Note that in the shuffle product, we distinguish duplicated letters. For instance, for a letter
a, we have a�a = 2 ·aa. Notice that the concatenation is a non-commutative operation, whereas
the shuffle product is commutative.

We also need a few notions on words. The length of a word w is denoted by ℓ(w) and counts
the number of letters in w. We also define ℓ (

∑︁
i αiwi) := maxi{ℓ(wi)}, for any linear combination

of words wi. Therefore, ℓ(w1 • w2) = ℓ(w1) + ℓ(w2) = ℓ(w1 � w2). As an R-vector space, T(Rd) is
graded by the length of the words:

T(Rd) =
⨁︂
n≥0

Tn(Rd),

where Tn(Rd) is the vector space spanned by the words of length n. We also denote by T≤n(Rd)
the partial direct sum

⨁︂
k≤n

Tk(Rd). This notation extends to T((Rd)). In the same way, σ(n)(X)

denotes the partial sum of σ(X) for which all the appearing words have length exactly n. We
are ready to prove the following result.

Proposition 3.2.3. The shuffle product is associative.

Proof. The associativity is clear for the empty word since (e�e)�e = e = e� (e�e). Now, we
proceed by induction. Assume that for any words w1, v1, and u1 such that ℓ(w1)+ℓ(v1)+ℓ(u1) = n,
for some n ∈ N0, we have that (w1� v1)� u1 = w1� (v1� u1). This is our inductive hypothesis.
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Let w2, v2, u2 be arbitrary words with the property that ℓ(w2) + ℓ(v2) + ℓ(u2) = n + 1. At
least one of those words must thus be non-empty. If exactly two of the words are empty, both
(w2� v2)� u2 and w2� (v2� u2) are obviously equal to the non-empty word. If exactly one of
the words is empty, both (w2 � v2)� u2 and w2 � (v2 � u2) are obviously equal to the shuffle
product of the two non-empty words. In the remaining case, if w2, v2, u2 are all non-empty, there
are words w, v, u and letters i, j, k such that w2 = wi, v2 = vj and u2 = uk. Then,

(w2 � v2)� u2 = (wi� vj)� uk =
(︁
(w� vj) • i + (wi� v) • j

)︁
� uk

=
(︁
(w� vj)� uk

)︁
• i +

(︁
(wi� v)� uk

)︁
• j +

(︂(︁
(w� vj)i + (wi� v)j

)︁
� u

)︂
• k

=
(︁
(w� vj)� uk

)︁
• i +

(︁
(wi� v)� uk

)︁
• j +

(︁
(wi� vj)� u

)︁
• k

Analogously,

w2 � (v2 � u2) =
(︁
w� (vj� uk)

)︁
• i +

(︁
wi� (v� uk)

)︁
• j +

(︁
wi� (vj� u)

)︁
• k.

Thus, since

ℓ(w) + ℓ(vj) + ℓ(uk) = ℓ(wi) + ℓ(v) + ℓ(uk) = ℓ(wi) + ℓ(vj) + ℓ(u) = n,

we again get (w2 � v2)� u2 = w2 � (v2 � u2) due to the induction hypothesis.

Going back to the signatures, the dual pairing (3.2) in T((Rd))×T(Rd) allows us to extract
the coefficient of a word in the signature of a path in the following way:

⟨σ(X), i1i2 . . . in⟩ =
∫︂ L

0
dXi1 . . . dXin .

Both operations, the concatenation and the shuffle products, behave nicely with respect to
the signature, as the following two known results describe. The first result, known as the shuffle
identity, relates the signature of a path with the shuffle product.

Proposition 3.2.4 (Shuffle identity, [Ree58, Equation (2.5.2)]). Let X : [0, L] −→ Rd be a
piecewise continuously differentiable path. Then, for every u, v ∈ T(Rd),

⟨σ(X), u⟩ ⟨σ(X), v⟩ = ⟨σ(X), u� v⟩ .

Another important result, known as Chen’s relation, describes the signature when we con-
catenate paths. Let us see how the concatenation path is defined.

Definition 3.2.5. Let X,Y : [0, L] −→ Rd be two piecewise continuously differentiable paths.
We define the concatenation of X and Y as the path X ⊔ Y : [0, 2L] −→ Rd given by X on [0, L]
and by Y·−L − Y0 +XL on [L, 2L] (i.e. take Y , move it back to 0 and then move it to the end of
X).

The concatenation product interplays nicely with the concatenation of paths, as the following
proposition shows.

Proposition 3.2.6 (Chen’s identity, [Che54, Theorem 3.1][Che57, Theorem 2.1]). Let X,Y :
[0, L] −→ Rd be two piecewise continuously differentiable paths and consider their concatenation
X ⊔ Y : [0, 2L] −→ Rd. Then, the signature of the concatenation is the concatenation product of
the signatures:

σ(X ⊔ Y ) = σ(X) • σ(Y ).
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We finish this section with an example on how to compute the first terms of the signature of
a path.
Example 3.2.7. Consider the path X : [0, 1] −→ R2 given by X1(t) = t and X2(t) = t2. We
compute a few terms of its signature.

⟨σ(X), 1⟩ =
∫︂ 1

0
dX1

r1
=
∫︂ 1

0
1dt = 1 ⟨σ(X), 2⟩ =

∫︂ 1

0
dX2

r1
=
∫︂ 1

0
2tdt = 1

⟨σ(X), 11⟩ =
∫︂ 1

0

∫︂ r2

0
dX1

r1
dX1

r2
=
∫︂ 1

0
r2dX

1
r2

=
∫︂ 1

0
r2dr2 = 1

2

⟨σ(X), 12⟩ =
∫︂ 1

0

∫︂ r2

0
dX1

r1
dX2

r2
=
∫︂ 1

0
r2dX

2
r2

=
∫︂ 1

0
2r2

2dr2 = 2
3

⟨σ(X), 21⟩ =
∫︂ 1

0

∫︂ r2

0
dX2

r1
dX1

r2
=
∫︂ 1

0
r2

2dX
1
r2

=
∫︂ 1

0
r2

2dr2 = 1
3

⟨σ(X), 22⟩ =
∫︂ 1

0

∫︂ r2

0
dX2

r1
dX2

r2
=
∫︂ 1

0
r2

2dX
2
r2

=
∫︂ 1

0
2r3

2dr2 = 2
4 = 1

2

⟨σ(X), 222⟩ =
∫︂ 1

0

∫︂ r3

0

∫︂ r2

0
dX2

r1
dX2

r2
dX2

r3
=
∫︂ 1

0

∫︂ r3

0
r2

2dX
2
r2
dX2

r3
=
∫︂ 1

0

∫︂ r3

0
2r3

2dr2dX
2
r3

=∫︂ 1

0

r4
3
2 dX

2
r3

=
∫︂ 1

0
r5

3dr3 = r6
3
6

⃓⃓⃓⃓1
0

= 1
6

Therefore, the signature of X is of the form

σ(X) = 1 + 2 + 1
2 · (11 + 22) + 1

3 · (2 · 12 + 21) + 1
6 · 222 + . . .

3.3 Signatures under the action of polynomial maps
Let p : Rd −→ Rm be a polynomial map given by the polynomials pi(x1, x2, . . . , xd), for
i = 1, 2, . . . ,m, with the property that p(0) = 0. The degree of the polynomial map p is the
maximum of the degree of the polynomials that define it, deg(p) = maxi deg(pi). Moreover, we
say that a polynomial map is homogeneous if the polynomials pi are homogeneous of the same
degree. Finally, we denote by Jp the Jacobian matrix of format m × d with entries J ij

p = ∂jpi,
for i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , d}.

Recall the algebra homomorphism φd defined by:
φd : R[x1, x2, . . . , xd] −→

(︁
T(Rd),�

)︁
xi ↦−→ i

xi1 · · ·xil
↦−→ i1 � · · ·� il

As we mention above, by the properties of the shuffle product in T(Rd), this map is injective but
is not surjective.

We now consider maps Mp, φ, and p∗ which complete the diagram (3.3) that arises in our
main question in the following way:

R[x1, . . . , xm] p∗
→→

↙ ↖

φm

↓↓

R[x1, . . . , xd]
↖↙

φd

↓↓
(T(Rm),�)

∃Mp →→
(︁
T(Rd),�

)︁
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Notice that the map Mp is unique when restricted to the image of φm, but not the full Mp on
the tensor algebra T(Rm).

Definition 3.3.1. For any polynomial map p : Rd → Rm such that p(0) = 0, let kij
p =

φd

(︁
J ij

p

)︁
∈ T(Rd), where J ij

p is the (i, j)-entry of the Jacobian matrix of p. We define the map
Mp : T(Rm) −→ T(Rd) recursively as follows:

Mp(e) = e, for e the empty word, and

Mp(wi) =
d∑︂

j=1

(︁
Mp(w)� kij

p

)︁
• j, for any word w and any letter i ∈ {1 . . . , m}.

Note: Do not confuse Mp with the map Mv from Definition 2.3.8, they are different in nature
and not even defined on the same space!

The following result summarizes a few properties of the map Mp. We will use these properties
to show that the map that Mp as we construct it restricts according to what we need.

Proposition 3.3.2. Consider two polynomial maps p : Rd −→ Rm and q : Rm −→ Rs, with
p(0) = 0 and q(0) = 0, and the algebra homomorphisms φm and φd. Then, we have the following
list of properties:

1. Mp : (T(Rm),�) −→ (T(Rd),�) is an algebra homomorphism.

2. For i = 1, . . . , s, Mp (φm(qi)) = φd(qi ◦ p), where the qi’s are the polynomials defining the
polynomial map q.

3. The coefficients in Definition 3.3.1 satisfy that kij
q◦p =

m∑︂
l=1

Mp(kil
q )� klj

p .

4. The map Mp behaves well with respect to composition of polynomial maps. That is, Mq◦p =
MpMq.

5. If p is a polynomial map of degree n, then Mp

(︁
Tk(Rm)

)︁
⊆ T≤nk(Rd).

6. If p is an homogeneous polynomial map of degree n, Mp

(︁
Tk(Rm)

)︁
⊆ Tnk(Rd)

Proof. 1. We need to show that, for any words w1 and w2 in T(Rm),

Mp(w1 � w2) = Mp(w1)�Mp(w2).

We proceed by induction on ℓ(w1) + ℓ(w2). For ℓ(w1) + ℓ(w2) ≤ 1, at least one of the two
words is the empty word e, and so we assume that w2 = e. Therefore,

Mp(w1 � w2) = Mp(w1 � e) = Mp(w1) = Mp(w1)� e = Mp(w1)�Mp(w2).

Assume now that the statement is true for any pair of words with sum of lengths at most
n− 1. Let u and v be two words such that ℓ(u) + ℓ(v) = n− 1 and a and b two arbitrary
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letters. Then, using Definitions 3.2.2 and 3.3.1, and the inductive hypothesis (IH),

Mp(ua� vb) Def.=
3.2.2

Mp ((u� vb) • a + (ua� v) • b) Def.=
3.3.1

d∑︂
i=1

[︁
Mp(u� vb)� kai

p +Mp(ua� v)� kbi
p

]︁
• i Def. 3.3.1=

(IH)

d∑︂
i=1

d∑︂
j=1

[︁
Mp(u)�

(︁
(Mp(v)� kbj

p ) • j
)︁
� kai

p

]︁
• i+

d∑︂
i=1

d∑︂
j=1

[︁(︁
(Mp(u)� kaj

p ) • j
)︁
�Mp(v)� kbi

p

]︁
• i Def.=

3.2.2(︄
d∑︂

i=1
(Mp(u)� kai

p ) • i

)︄
�

(︄
d∑︂

i=1
(Mp(v)� kbi

p ) • i

)︄
Def.=
3.3.1

Mp(ua)�Mp(vb).

2. Assume that Mp(i) = φd(pi), for all i. Then, for the monomial h(x1, . . . , xm) = xn1
1 ·

xn2
2 · · ·xnm

m , φm(h) = 1�n1 � · · ·� m�nm . Therefore, by the property (1),

Mp(φm(h)) = Mp(1)�n1
� · · ·�Mp(m)�nm = φd(p1)�n1

� · · ·� φd(pm)�nm

= φd(pn1
1 · · · pnm

m ) = φd(h ◦ p),

and the property (2) follows by linearity.

We prove now the claim Mp(i) = φd(pi), for all i. Since the two maps p ↦−→ Mp(i) and
p ↦−→ φd(pi) are linear, it is enough to prove the claim for the case when pi is a monomial
of the form pi = xn1

1 · x
n2
2 · · ·x

nd

d , with at least one of the ni’s non-zero. In this case,

Mp(i) =
d∑︂

j=1

(︁
Mp(e)� kij

p

)︁
• j =

d∑︂
j=1

kij
p • j

=
d∑︂

j=1
nj ̸=0

nj

(︂
1�(n1−δ1j)

� · · ·� d�(nd−δdj)
)︂
• j = 1�n1

� · · ·� d�nd = φd(pi),

where ∗ follows by applying enough iterations of the recursive definition of the shuffle
product and the fact that i�n+1 = (n+ 1)i�n • i.

3. By the chain rule, J ij
q◦p =

m∑︂
l=1

(︁
J il

q ◦ p
)︁
· J lj

p . By (2), we have that φd(J il
q ◦ p) = Mp

(︁
φm(J il

q )
)︁

=

Mp(kil
q ). Thus,

kij
q◦p = φd

(︁
J ij

q◦p

)︁
= φd

(︄
m∑︂

l=1

(︁
J il

q ◦ p
)︁
· J lj

p

)︄
=

m∑︂
l=1

φd

(︁
J il

q ◦ p
)︁
� φd(J lj

p ) =
m∑︂

l=1
Mp(kil

q )� klj
p .
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4. We proceed by induction on ℓ(w). For a letter i,

Mp ◦Mq(i) = Mp(Mq(i)) = Mp

⎛⎝ m∑︂
j=1

kij
q • j

⎞⎠ =
m∑︂

j=1
Mp

(︁
kij

q • j
)︁

=

m∑︂
j=1

(︄
d∑︂

l=1
Mp(kij

q � kjl
p

)︄
• l =

d∑︂
l=1

⎛⎝ m∑︂
j=1

Mp(kij
q � kjl

p

⎞⎠ • l
(3)=

d∑︂
l=1

kil
q◦p • l = Mq◦p(i).

Now, we assume that the statement is true for all the words of length at most n and we
refer to this as (IH). Let w be one of these words and i any letter. Then,

Mp ◦Mq(wi) = Mp (Mq(wi)) = Mp

⎛⎝⎛⎝ m∑︂
j=1

Mq(w)� kij
q

⎞⎠ • j

⎞⎠ =

m∑︂
j=1

Mp

(︁
(Mq(w)� kij

q ) • j
)︁

=
m∑︂

j=1

d∑︂
l=1

[︁
Mp

(︁
Mq(w)� kij

q

)︁
� kjl

p

]︁
• l

(1)=

m∑︂
j=1

d∑︂
l=1

[︁
Mp(Mq(w))�Mp(kij

q )� kjl
p

]︁
• l

(IH)=
m∑︂

j=1

d∑︂
l=1

[︁
Mq◦p(w))�Mp(kij

q )� kjl
p

]︁
• l =

d∑︂
l=1

⎡⎣Mq◦p(w))�

⎛⎝ m∑︂
j=1

Mp(kij
q )� kjl

p

⎞⎠⎤⎦ • l
(3)=

d∑︂
l=1

[︁
Mq◦p(w)� kil

q◦p

]︁
• l = Mq◦p(wi).

5. We start by noticing that since the polynomial map p has degree n, then deg(pi) ≤ n, for
all i. Thus, deg(J ij

p ) ≤ n− 1 and ℓ
(︁
φd(J ij

p )
)︁
≤ n− 1, for all i and j.

Now, we proceed by induction on k. For k = 1, T1 (Rm) is the set of letters {1, . . . , m}.

Since for a letter i in this set Mp(i) =
d∑︂

j=1
kij

p • j, then ℓ(Mp(i)) = max
j

{︁
ℓ(kij

p • j)
}︁
≤ n.

Thus, Mp(i) ∈ T≤n(Rd).
Assume that the statement is true for k. Any word w′ ∈ Tk+1(Rm) can be written as
w′ = w • i, with w ∈ Tk(Rm) and i a letter. We analyze the length of Mp(w • i). Since

Mp(w • i) =
d∑︂

j=1

(︁
Mp(w)� kij

p

)︁
• j, it is enough to upper bound the length of the terms

appearing in the sum. By the inductive hypothesis, ℓ(Mp(w)) ≤ nk, and since ℓ(kij
p ) ≤ n−1,

ℓ(Mp(w)� kij
p ) ≤ nk + n− 1. Therefore, ℓ(Mp(w • i)) ≤ nk + n− 1 + 1 = n(k + 1).

6. In this case, since p is homogeneous of degree n, then deg(pi) = n, for all i. Moreover,
deg(J ij

p ) = n− 1, if the variable xj appears in pi, or zero, otherwise.
We proceed by induction on k. For k = 1, let i be a letter in {1, . . . , m}. Then,

Mp(i) =
d∑︂

j=1
kij

p • j. This sum contains only terms kij
p •j, which has length exactly n, oth-

erwise kij
p is zero according to our observation about the Jacobian entries above. Therefore,

the statement follows.
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Now, assume the statement is true for k. Let w ∈ Tk(Rm) be a word and i a letter. In

this case, Mp(w • i) =
d∑︂

j=1

(︁
Mp(w)� kij

p

)︁
• j. Again, the terms appearing in this sum have

length nk + n− 1 + 1 = n(k + 1), which concludes the proof.

Once we have these properties, we recall Theorem 3.1.1 and prove it.

Theorem 3.3.3. (Theorem 3.1.1) There exists an algebra homomorphism Mp : (T(Rm),�) −→(︁
T(Rd),�

)︁
such that its restriction

Mp|Im(φm) is the unique algebra homomorphism that makes the following diagram commute:

R[x1, . . . , xm] p∗
→→

↙ ↖

φm

↓↓

R[x1, . . . , xd]
↖↙

φd

↓↓
Im(φm)

∃! Mp|Im(φm) →→ Im(φd)

Proof. By (1) in Proposition 3.3.2, the restriction of Mp to the image Im(φm) is an algebra
homomorphism. Moreover, due to (2), we have that Mp (Im(φm)) ⊆ Im(φd). Since we restrict
to their images, φm and φd are isomorphisms and the map Mp|Im(φm) is the unique one making
the diagram commute.

Let us see now the answer to our main question, which is stated as Theorem 3.1.2.

Theorem 3.3.4. (Theorem 3.1.2) Let X : [0, L] −→ Rd be a piecewise continuously differentiable
path with X0 = 0 and let p : Rd −→ Rm be a polynomial map with p(0) = 0. Then, for all
w ∈ T(Rm),

⟨σ(p(X)), w⟩ = ⟨σ(X),Mp(w)⟩ .

Equivalently, σ(p(X)) = M∗
p (σ(X)).

Proof. Let Y = p(X). Then, Ẏs =
d∑︂

j=1
J ij

p (Xs) · Ẋj
s , for almost every s ∈ [0, L]. Notice that the

entries of the Jacobian matrix can be seen as coefficients of the signature of X,

J ij
p (Xt) =

⟨︂
σ
(︂
X|[0,t]

)︂
, kij

p

⟩︂
. (3.4)

We proceed by induction on the length of the word w. For a letter i, we have that

⟨σ(Y ), i⟩ =
∫︂ L

0
dY i

t =
∫︂ L

0
Ẏ i

t dt =
d∑︂

j=1

∫︂ L

0
J ij

p (Xt)Ẋj
t dt =

d∑︂
j=1

∫︂ L

0
J ij

p (Xt)dXj
t

(3.4)=
d∑︂

j=1

∫︂ L

0

⟨︂
σ
(︂
X|[0,t]

)︂
, kij

p

⟩︂
dXj

t =

d∑︂
j=1

⟨︁
σ(X), kij

p • j
⟩︁

= ⟨σ(X),Mp(i)⟩ .
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Now, assume that the statement is true for all the words of length at most n. Let w be any
of these words and i any letter. By the definition of the signature,

⟨σ(Y ), wi⟩ =
∫︂ L

0

⟨︂
σ
(︂
Y |[0,t]

)︂
, w
⟩︂
dY i

t =
∫︂ L

0

⟨︂
σ
(︂
Y |[0,t]

)︂
, w
⟩︂
Ẏ i

t dt =

d∑︂
j=1

∫︂ L

0

⟨︂
σ
(︂
Y |[0,t]

)︂
, w
⟩︂
J ij

p (Xt)Ẋj
t dt =

d∑︂
j=1

∫︂ L

0

⟨︂
σ
(︂
Y |[0,t]

)︂
, w
⟩︂
J ij

p (Xt)dXj
t

(3.4)=

d∑︂
j=1

∫︂ L

0

⟨︂
σ
(︂
Y |[0,t]

)︂
, w
⟩︂⟨︂

σ
(︂
X|[0,t]

)︂
, kij

p

⟩︂
dXj

t . (3.5)

Now, apply the inductive hypothesis to
⟨︂
σ
(︂
Y |[0,t]

)︂
, w
⟩︂

in (3.5), and then by the shuffle identity,
Proposition 3.2.4, and the definition of the signature,

⟨σ(Y ), wi⟩ =
d∑︂

j=1

∫︂ L

0

⟨︂
σ
(︂
X|[0,t]

)︂
,Mp(w)

⟩︂⟨︂
σ
(︂
X|[0,t]

)︂
, kij

p

⟩︂
dXj

t =

d∑︂
j=1

∫︂ L

0

⟨︂
σ
(︂
X|[0,t]

)︂
,Mp(w)� kij

p

⟩︂
dXj

t =
d∑︂

j=1

⟨︁
σ(Xt),

(︁
Mp(w)� kij

p

)︁
• j
⟩︁

=

⟨σ(X),Mp(wi)⟩ .

We finish this section with a generalization of Theorem 3.1.2 to polynomial maps that do not
satisfy the condition p(0) = 0 and paths that do not start at the origin.
Corollary 3.3.5. Let X : [0, L] −→ Rd be a piecewise continuously differentiable path and let
p : Rd −→ Rm be a polynomial map. Consider the map p̃ given by p̃(y) = p(y + X0) − p(X0).
Then, for all w ∈ T(Rm),

⟨σ(p(X)), w⟩ = ⟨σ(X),Mp̃(w)⟩ .
Proof. The statement follows using the same argument as in the proof of Theorem 3.1.2 if we
take into account that in this case,

J ij
p (Xt) = J ij

p̃ (Xt −X0) =
⟨︂
σ
(︂
X|[0,t]

)︂
, kij

p̃

⟩︂
.

3.3.1 Mp as a half-shuffle homomorphism
The shuffle product can be seen as the symmetrization of the right half-shuffle, which we define in
the following way. Let T≥1(Rd) =

⨁︂
n≥1

Tn(Rd) denote the vector space spanned by the non-empty

words built from d letters.
Definition 3.3.6 ([Sch59, Section IV, Equation (S2)],[FP13, Definition 2.1],cf. also [EM53, Sect.
18]). The right half-shuffle ≻ : T≥1(Rd)×T≥1(Rd)→ T≥1(Rd) is recursively given on words as

w≻ i := wi,

w≻ vi := (w≻ v + v≻ w) • i,

where w, v are words and i is a letter.
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Therefore, for any non-empty words w, v

w� v = w≻ v + v≻ w.

Indeed, for non-empty words w, v and letters i, j, we have

i≻ j + j≻ i = ij + ji,

wi≻ j + j≻ wi = wij + (j≻ w + w≻ j) • i, and
wi≻ vj + vj≻ wi = (wi≻ v + v≻ wi) • j + (vj≻ w + w≻ vj) • i,

in accordance with Definition 3.2.2. Thus, the second equation in Definition 3.3.6 can be rewritten
as

w≻ vi = (w� v) • i. (3.6)
It turns out that the right half-shuffle is an example of a more general type of algebras, the

Zinbiel algebras.

Definition 3.3.7 ([EM53, Equation (18.7)]1, [Sch59, Section IV, Equation (S0)], [FP13, Equa-
tion (1.4)]). A (right) Zinbiel algebra is a vector space Z together with a bilinear map ⋟ : Z×Z →
Z such that, for all a, b, c ∈ Z,

a⋟ (b⋟ c) = (a⋟ b+ b⋟ a)⋟ c.

We include here the proof of the next result since it is interesting.

Theorem 3.3.8 ([Sch59, Section IV, Equation (S0)],[Lod95, Proposition 1.8]). (T≥1(Rd),≻) is
a Zinbiel algebra, i.e. for any non-empty words w, v, and u,

w≻ (v≻ u) = (w� v)≻ u. (3.7)

Proof. Let w, v, and u be non-empty words and i be an arbitrary letter. By the definition of the
half-shuffle and Equation (3.6), we have

w≻ (v≻ i) = w≻ vi = (w� v) • i = (w� v)≻ i.

Using Equation (3.6) and associativity of the shuffle product, Proposition 3.2.3, we obtain that

w≻ (v≻ ui) = w≻
(︁
(v� u) • i

)︁
=
(︁
w� (v� u)

)︁
• i =

(︁
(w� v)� u

)︁
• i =

(w� v)≻ ui.

In fact, it is known that (T≥1(Rd),≻) is free in this case.

Theorem 3.3.9 ([Sch59, Section IV, page 19]2[Lod95, Proposition 1.8]). Indeed, (T≥1(Rd),≻)
is the free Zinbiel algebra over Rd.

This means that for any Zinbiel algebra (Z,⋟) and any linear map B : Rd → Z, there is
a unique homomorphism ΛB : (T≥1(Rd),≻) → (Z,⋟) such that B = ΛB ◦ ι, where ι : Rd →
T≥1(Rd) is the canonical embedding. This is known as the universal property of the free Zinbiel
algebra and is described in Diagram 3.3.1. We call ΛB the unique extension of B to a Zinbiel
homomorphism.

1Eilenberg and Mac Lane in [EM53, Section 18] discovered what we call today a ??, i.e. one has (x ↓ y) ↓ z =
x ↓ (y ↓ z + (−1)|y|+|z|z ↓ y) for homogeneous elements x, y.

2Note that Schützenberger in [Sch59, Section IV] treated the shuffle algebra as a Z-module, and so his obser-
vation there was, stated in modern terms, the fact that the Z shuffle algebra is the free Z Zinbiel algebra.
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Rd (T≥1(Rd),≻)

(Z,⋟)

ι

B
ΛB

Diagram 3.3.1: Universal property of the free Zinbiel algebra

Proof. (Based on the proof of [Lod95, Proposition 1.8].) Define the linear map ΛB : T≥1(Rd)→
Z recursively by

ΛBi := Li, ΛBvi := ΛBv⋟ ΛBi,

where we identified Rd with the letters in T≥1(Rd). Since vi = v≻ i, this is the only candidate
for a map with the desired properties. It remains to show that it is indeed a homomorphism of
Zinbiel algebras.

By definition, it holds that ΛBij = ΛBi ⋟ ΛBj. Thus, assume that ΛBxy = ΛBx ⋟ ΛBy
holds for all nonempty words x, y such that |x|+ |y| = n. Then, for all nonempty words w and v
such that |w|+ |v| = n, we have

ΛBw⋟ ΛBvi = ΛBw⋟ (ΛBv⋟ ΛBi) = (ΛBw⋟ ΛBv + ΛBv⋟ ΛBw)⋟ ΛBi

= ΛB(w≻ v + v≻ w)⋟ ΛBi = ΛB((w≻ v + v≻ w)≻ i) = ΛB(w≻ (v≻ i))
= ΛB(w≻ vi),

and ΛBui := ΛBu⋟ΛBi, for all nonempty words u with |u| = n by definition. The claim follows
by induction over n.

The following result describes the relation between the map Mp and the half-shuffle.

Theorem 3.3.10. The restriction of Mp to T≥1(Rd), denoted Mp|T≥1(Rd), is the unique half-
shuffle homomorphism such that Mp(i) = φd(pi).

Proof. We have Mp(i) = φ(pi) by Proposition 3.3.2 (3). Then, using (3.6) and the definition of
Mp, we get

Mp(wi) =
d∑︂

j=1

(︁
Mp(w)� kij

p

)︁
• j = Mp(w)≻

(︂ d∑︂
j=1

kij
p • j

)︂
= Mp(w)≻Mp(i),

and thus the statement follows immediately from the proof of Theorem 3.3.9.

We finish this section with a generalization of Theorem 3.1.2 in terms of Zinbiel algebras
stated in the following result.

Theorem 3.3.11. Let X : [0, L] −→ Rd be a piecewise continuously differentiable path and
B : Rm → (T≥1(Rd),≻) be a linear map. Then, the signature of the path

Y : [0, L] −→ Rm, Y i
t :=

⟨︁
σ
(︁
X|[0,t]

)︁
, Bi

⟩︁
,

is a linear transformation of the signature of X, namely

⟨σ(Y ), w⟩ = ⟨σ(X),ΛBw⟩ ,

where ΛB is the unique extension of B to a Zinbiel homomorphism.
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Remark 3.3.12. To see that this result indeed implies Theorem 3.1.2, consider a piecewise con-
tinuously differentiable path X : [0, L] −→ Rd with X0 = 0 and a polynomial map p : Rd −→ Rm

with p(0) = 0. Let then B : Rm → (T≥1(Rd),≻) be the linear map given by Bi = φd(pi) and

Y : [0, L] −→ Rm, Y i
t :=

⟨︁
σ
(︁
X|[0,t]

)︁
, Bi

⟩︁
as in the previous result. Since

⟨σ
(︁
X|[0,t]

)︁
, φd(xi)⟩ = ⟨σ

(︁
X|[0,t]

)︁
, i⟩ = Xi

t −Xi
0 = Xi

t ,

and q ↦−→ ⟨σ
(︁
X|[0,t]

)︁
, φd(q)⟩ is an algebra homomorphism due to the shuffle identity Proposi-

tion 3.2.4, we have that⟨︁
σ
(︁
X|[0,t]

)︁
, Bi

⟩︁
=
⟨︁
σ
(︁
X|[0,t]

)︁
, φd(pi)

⟩︁
= pi(X),

and thus Y = p(X). Note Theorem 3.3.10 implies ΛB = Mp, and thus the statement of Theo-
rem 3.3.11 in this case reads as

⟨σ(p(X)), w⟩ = ⟨σ(X),Mpw⟩ ,

which is exactly the relation we get from Theorem 3.1.2.
In Example 3.3.14, we will look at a situation which is not covered by Theorem 3.1.2, yet

does fall under the scope of Theorem 3.3.11, meaning that the latter is indeed more general.
Before proving this result, we introduce some notation. We denote by Xz

0s the coefficient of
z in the signature of the path X restricted to the interval [0, s]. That is,

Xz
0s := ⟨σ(X↾[0,s]), z⟩.

Note that Xi
0s = Xi

s−Xi
0. Then, the path Y introduced in Theorem 3.3.11 is given by Y i

s = XBi
0s .

Moreover, for any letter i, we define the maps T−
i ,T+

i : T(Rd)→ T(Rd) to be the unique linear
maps given recursively by T+

i w = wi and by T−
i wj = δijw with T−

i e = 0, respectively, for any
word w.

These two maps allow us to define the right half-shuffle as shown in the following technical
result.

Lemma 3.3.13. For any x, y ∈ T≥1(Rd), we have x≻ y =
d∑︂

i=1

T+
i (x� T−

i y).

Proof. This is just a reformulation of (3.6) in the following way. For any word v, any non-empty
word w, and any letter j, we have that

d∑︂
i=1

T+
i (w� T−

i vj) = T+
j (w� v) = (w� v) • j = w≻ vj,

where the last equality follows from (3.6). Then, the general statement for any x, y ∈ T≥1(Rd)
follows from (bi)linearity.

Now we are ready to prove Theorem 3.3.11.

Proof of Theorem 3.3.11. For better readability, we put Λ := ΛB . First note that by the defi-
nition of the signature and the fact that X is continuously differentiable almost everywhere, we
have

Y i
s = XBi

0s = XΛi
0s =

d∑︂
i=1

∫︂ s

0
X

T−
i Λi

0t dXi
t =

d∑︂
i=1

∫︂ s

0
X

T−
i Λi

0t Ẋi
tdt



3.3. SIGNATURES UNDER THE ACTION OF POLYNOMIAL MAPS 79

and thus, for almost all s ∈ [0, L],

Ẏ i
s =

d∑︂
i=1

X
T−

i Λi
0t Ẋi

t .

Following an inductive argument, assume now that XΛw
0s = Y w

0s holds for some word w. Then,

Y wi
0s =

∫︂ s

0
Y w

0tdY i
t =

∫︂ s

0
Y w

0tẎ
i

t dt =
d∑︂

l=1

∫︂ s

0
XΛw

0t X
T−

l
Λi

0t Ẋ l
tdt

=
∫︂ s

0
X

∑︁d

l=1
Λw�T−

l Λi
0t dXl

0t = X

∑︁d

l=1
T+

l (Λw�T−
l Λi)

0t = XΛw≻Λi
0t = XΛwi

0t ,

where we used Lemma 3.3.13 and the fact that Λ is a homomorphism of Zinbiel algebras.

Theorem 3.3.11 can also be directly shown using∫︂ s

0
Xx

0tdX
y
0t = Xx≻y

0s (3.8)

for any x, y ∈ T≥1(Rd), a relation which is quite fundamental for an algebraic understanding
of the signature and was mentioned already for example in [GK08] right after Equation (6).
Conversely, starting from Theorem 3.3.11, equation (3.8) is immediate with the choice B1 =
x,B2 = y.

The following example illustrates the results presented in this section.

Example 3.3.14. For a given path X : [0, L]→ R3, let

Y =
(︁
Area(X2, X3),Area(X3, X1),Area(X1, X2)

)︁
denote the ’area path’ of X, where Area(Xi, Xj)t =

∫︁ t

0
∫︁ s

0 dXi
udXj

s −
∫︁ t

0
∫︁ s

0 dXj
udXi

s. Let us
compute ⟨σ(Y ), 12− 21⟩ in the special case that X : [0, 1]→ R3, X(t) = (t, t2, t3).

Area(Xi, Xj)t =
∫︂ t

0

∫︂ s

0
dXi

udXj
s −

∫︂ t

0

∫︂ s

0
dXj

udXi
s.

Let us compute ⟨σ(Y ), 12− 21⟩ in the special case that X : [0, 1]→ R3, with X(t) = (t, t2, t3).
First of all, we have

Y i
s =

⟨︁
σ(X|[0,T ]), Bi

⟩︁
,

where B denotes the linear map from R3 (interpreted as the vector space spanned by the letters
1, 2, 3) to T(R3) given by

B1 = 23− 32, B2 = 31− 13, B3 = 12− 21.

Theorem 3.3.11 thus applies, and in order to see how ⟨σ(Y ), 12− 21⟩ can be expressed in terms
of iterated integrals of X, we only need to compute ΛB(12− 21) = B1≻B2−B2≻B1. To this
end,

(23− 32)≻ (31− 13) = 2 · 2331− 2 · 3321− 2313− 2133− 1233 + 3213 + 3123 + 1323,

(31− 13)≻ (23− 32) = 3123 + 3213 + 2313− 1323− 1233− 2133− 3132− 2 · 3312

+ 2 · 1332 + 3132.
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Thus, ΛB(12−21) = 2 ·(−1323 + 1332 + 2313− 2331 + 3312− 3321). Since in our special case
of X(t) = (t, t2, t3) it holds that [DR19, Remark 3.30][AFS19, Example 2.2]∫︂ 1

0

∫︂ u

0

∫︂ t

0

∫︂ s

0
dXi

rdXj
s dXk

t dX l
u = j · k · l

(j + i)(k + j + i)(l + k + j + i) ,

we finally obtain that

⟨σ(Y ), 12− 21⟩ = 2 ·
(︃
−3 · 2 · 3

4 · 6 · 9 + 3 · 3 · 2
4 · 7 · 9 + 3 · 1 · 3

5 · 6 · 9 −
3 · 3 · 1
5 · 8 · 9 + 3 · 1 · 2

6 · 7 · 9 −
3 · 2 · 1
6 · 8 · 9

)︃
= − 1

315 ≈ −0.00317.

We hereby computed the value of a particular area of areas of the original path X, namely
Area(Area(X2, X3),Area(X3, X1))1. See [DLPR21] and Chapter 4 of this thesis for more on
the algebraic theory behind areas of areas.

3.4 Examples and consequences
Let us start with an easy example to illustrate how Theorem 3.1.2 works, and also the property (5)
in Proposition 3.3.2.

Example 3.4.1. Consider the polynomial map p : R2 −→ R3 given by the polynomials p1 = x2,
p2 = y3 and p3 = x − y. Consider also the path in Example 3.2.7, X : [0, 1] −→ R2 given by
X1(t) = t and X2(t) = t2. We want to compute a few terms in the signature of the path p(X).

We start computing the Jacobian matrix and its image under φ:

(︁
J ij

p

)︁
i,j

=

⎛⎝ 2x 0
0 3y2

1 −1

⎞⎠ and
(︁
kij

p

)︁
i,j

=
(︁
φ
(︁
J ij

p

)︁)︁
i,j

=

⎛⎝ 2 · 1 0
0 6 · 22
e −e

⎞⎠ .

Notice that φ(3y2) = 3 · 2� 2 = 6 · 22. We use Definition 3.3.1 to compute the image of a few
words:

Mp(1) = 2 · 11, Mp(2) = 6 · 222, Mp(3) = 1− 2,

Mp(33) = (1− 2) • 1− (1− 2) • 2 = 11 + 22− 12− 21.

We observe that for any word w above, ℓ (Mp(w)) ≤ 3 · ℓ(w). This is due to property (5) in
Proposition 3.3.2 since deg(p) = 3. Now, applying Theorem 3.1.2 and looking at the signature
terms computed in Example 3.2.7, we obtain that

⟨σ (p(X)) , 1⟩ = ⟨σ(X),Mp(1)⟩ = ⟨σ(X), 2 · 11⟩ = 2 · 1
2 = 1,

⟨σ (p(X)) , 2⟩ = ⟨σ(X),Mp(2)⟩ = ⟨σ(X), 6 · 222⟩ = 6 · 1
6 = 1,

⟨σ (p(X)) , 3⟩ = ⟨σ(X),Mp(3)⟩ = ⟨σ(X), 1− 2⟩ = 1− 1 = 0, and

⟨σ (p(X)) , 33⟩ = ⟨σ(X),Mp(33)⟩ = ⟨σ(X), 11 + 22− 12− 21⟩ = 0.

This second example is more generic and shows the property (6) in Proposition 3.3.2.
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Example 3.4.2. Let X be any piecewise continuously differentiable path in R2. Consider the
polynomial map p : R2 −→ R3 given by p(x, y) = (x2, xy, y2), and fix k = 2.

By Theorem 3.1.2, the coefficient of w in σ (p(X)) is given by the coefficient of Mp(w) in
σ(X). Moreover, by Proposition 3.3.2 (6), the words appearing in Mp(w) have length exactly 4.
One way of storing σ(2) (p(X)) is using a matrix that encodes the coefficients in Mp(w),

σ(2) (p(X))⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11
12
13
21
22
23
31
32
33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
↭

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 2 0 2 0 0 0 2 0 0 0 0 0 0 0
0 0 0 4 0 4 0 0 0 4 0 0 0 0 0 0
0 0 4 0 4 0 0 0 4 0 0 0 0 0 0 0
0 0 0 2 0 2 2 0 0 2 2 0 2 0 0 0
0 0 0 0 0 0 0 4 0 0 0 4 0 4 0 0
0 0 0 0 0 0 4 0 0 0 4 0 4 0 0 0
0 0 0 0 0 0 0 2 0 0 0 2 0 2 6 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

σ(4)(X)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1111
1112
1121
1122
1211
1212
1221
1222
2111
2112
2121
2122
2211
2212
2221
2222

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

More generally, by Proposition 3.3.2 (6), for any word w in the alphabet {1, 2, 3} with ℓ(w) = k,
Mp(w) is a sum of words in the alphabet {1, 2} of length 2k. Applying Theorem 3.1.2, the
information of σ(k) (p(X)) can be stored in terms of σ(2k)(X). In fact, there exists a matrix M
of format 3k × 22k that describes the change of coordinates in the following sense. Fix an order
on the words, for instance, lexicographic order as above. The coefficients of σ(k)(p(X)) and the
coefficients of σ(2k)(X) are related as

σ(k) (p(X))⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

k⏟ ⏞⏞ ⏟
11 . . . 1
1 . . . 12

...
3 . . . 32
3 . . . 33⏞ ⏟⏟ ⏞

k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= M

σ(2k)(X)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2k⏟ ⏞⏞ ⏟
11 . . . 1
1 . . . 12

...
2 . . . 21
2 . . . 22⏞ ⏟⏟ ⏞

2k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where the row indexed by w in M is given by the coefficients of Mp(w). Moreover, we want to
point out the following properties of this homomorphism Mp:

• For w = 1 . . . 1⏞ ⏟⏟ ⏞
k times

, Mp(w) = (2k)!
k! · w • w.

• For w = 2 . . . 2⏞ ⏟⏟ ⏞
k times

, Mp(w) = k! · 1 . . . 1⏞ ⏟⏟ ⏞
k times

� 2 . . . 2⏞ ⏟⏟ ⏞
k times

.



82 CHAPTER 3. SIGNATURES OF PATHS TRANSFORMED BY POLYNOMIAL MAPS

• For w = 3 . . . 3⏞ ⏟⏟ ⏞
k times

, Mp(w) = (2k)!
k! 2 . . . 2⏞ ⏟⏟ ⏞

2k times

.

The rest of this section is dedicated to analysing the consequences of Theorems 3.1.1 and 3.1.2
in several particular cases. We start looking at the case in which X is itself a polynomial map
and we need the following definition.

Definition 3.4.3. For an element a ∈ T((Rd)), with zero coefficient for the empty word e, we
define the concatenation product exponential of a as

exp•(a) :=
∑︂
n≥0

a•n

n! .

More information on this exponential map and its inverse, the logarithm, can be found
in [Reu93, Section 3.1].

Corollary 3.4.4. Let X : [0, L] −→ Rd be a polynomial map, with L ∈ R, L ≥ 1. Then, for any
w ∈ T(Rd),

⟨σ(X), w⟩ = ⟨exp•(L · 1),MX̃(w)⟩ ,

where X̃(y) = X(y)−X0. Equivalently, σ(X) = M∗
X̃

(exp•(L · 1)).

Proof. Let Y : [0, L] −→ R be the path given by Y (t) = t. Then, σ(Y ) = exp•(L · 1). The
statement follows by Corollary 3.3.5 applied to the path Y and the polynomial map X.

The next result looks at the case when M∗
p (σ(X)) = 0 from the perspective of the polynomial

map and of the piecewise continuously differentiable path. We first introduce two concepts.
Given a polynomial map p, we define the ideal generated by p as the ideal Ip generated by the
polynomials that define the map p, i.e. Ip = ⟨p1, . . . , pm⟩. Moreover, we define a tree-like path
as a path X such that σ(X) = 0. This definition is the characterization obtained for bounded
variation paths by B. M. Hambly and T. J. Lyons in [HL10, Theorem 4], while a more general
topological definition can be found in [BGLY16, Definition 1.1] and in Section 1.1 of this thesis.
Remark 3.4.5. A very simple example of a tree-like path is a concatenation of paths A⊔B⊔C⊔D
such that the paths A and B (resp. C and D) are of the same shape, but parametrized in the
opposite direction. When we compute the integrals on such a path, we get cancellations and the
signature of the path does not see the A⊔B ⊔C ⊔D loop, i.e. σ(A⊔B ⊔C ⊔D) = e, the empty
word.

The following result describes the situation in which the (image of the) path lies in the zeros
of the ideal Ip, for some polynomial map p.

Corollary 3.4.6. Let p : Rd −→ Rm be a polynomial map with associated ideal Ip. We define
the polynomial map p̃(y) = p(y +X0)− p(X0), for which p̃(0) = 0.

• If X : [0, L] −→ Rd is a piecewise continuously differentiable path such that X(t) ∈ V(Ip)
for all t ∈ [0, L], then M∗

p̃ (σ(X)) = e.

• Conversely, if M∗
p̃ (σ(X)) = e, for some piecewise continuously differentiable path X :

[0, L] −→ Rd, then p(X) is tree-like.

The last consequence is that the dual map M∗
p behaves nicely with respect to the concatena-

tion of signatures.
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Corollary 3.4.7. Let p : Rd −→ Rm be a polynomial map with p(0) = 0 and let X,Y : [0, L] −→
Rd be two piecewise continuously differentiable paths with X0 = Y0 = 0. Then,

M∗
p (σ(X) • σ(Y )) = M∗

p (σ(X)) •M∗
q (σ(Y )),

where q(y) = p(y +XL −X0)− p(XL −X0).

3.5 Applications and future work
The results presented in this chapter solve an algebraic question that arises from the signatures of
paths, an object commonly studied in stochastic analysis. There are several interesting problems
that do not fit on the algebraic flavour of this chapter. We summarize them in the following list.

(A) In comparison with the results presented in [PSS19], we would like to explore a non-linear
version of their approach using dictionaries. The idea is that if we have a family of generic
paths, χ, for which we know the signature and a polynomial map p, then Theorem 3.1.2
allows us to compute the signature of all the paths in p(χ).
For instance, Example 3.4.2 shows that we can compute the signature of p(X) for any
piecewise continuously differentiable path X by multiplying the signature of X by a matrix
at each level. Therefore, we have the following question:

Is it possible to understand σ(p(X)) in terms of σ(X) and Mp

in the language of tensors?

(B) Another line of future research is focused on the map Mp. Since it is defined from a
polynomial map without involving any piecewise continuously differentiable path and gives
us the commuting diagram (3.3), we intuit that it is worth to look for more interesting
properties. For that, we should look to the big picture involving the Hopf algebra structures,
as well as other constructions.
In this direction, at the end of Example 3.4.2 we describe combinatorially Mp(w) for some
particular words w. A more general question would be the following:

For which words w and polynomial maps p is there a non-recursive combinatorial
formula for Mp(w)?

Answering this question could be very useful from the computational perspective.
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Chapter 4

Areas of areas generate the
shuffle algebra

This chapter is based on [DLPR21]. Changes and additions to the material have been made by
the author of this thesis towards the version presented in this chapter.

4.1 Introduction

We give a concise introduction here and spell out the notation more fully in the next section. The
shuffle algebra T (Rd) over d letters is the vector space spanned by words in the letters 1, . . . , d
with the commutative shuffle product. This is a free commutative algebra over the Lyndon
words. Put differently, it can be viewed as a polynomial algebra in new commuting variables xw,
where w ranges over all Lyndon words. That is, as commutative algebras,

R[xw : w is Lyndon] ∼= T (Rd).

The isomorphism is given by xw ↦→ w ∈ T (Rd). There are many more (free) generators known:
any basis for the Lie algebra, coordinates of the first kind, . . . (compare Corollary 4.4.5).
The relevance for iterated integrals is as follows. Let X : [0, T ] → Rd be a (piecewise smooth)
curve and let fi ∈ T (Rd), i ∈ I, be a generating set of the shuffle algebra. Then: any term
in the iterated-integrals signature S(X)0,T (introduced in [Che54] under the name exponential
homomorphism, see also e.g. [LCL07, Chapter 2]) is a polynomial in the real numbers⟨︂

fi, S(X)0,T

⟩︂
, i ∈ I.

Indeed, by assumption, any word w can be written as

w = P�(fi : i ∈ I),

where P� is some shuffle polynomial in finitely many of the fi. By the shuffle identity we then
get ⟨︂

w, S(X)0,T

⟩︂
=
⟨︂
P�(fi : i ∈ I), S(X)0,T

⟩︂
= P

(︂⟨︂
fi, S(X)0,T

⟩︂
: i ∈ I

)︂
,

85
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where P is the corresponding polynomial expression in the real numbers ⟨fi, S(X)0,T ⟩, i ∈ I.
The latter numbers then contain all the information of the iterated-integrals signature, since
every iterated integral is a polynomial expression in them.
We are interested in whether there is a shuffle generating set in terms of “areas of areas”. Define
the following bilinear operation on T (Rd)

area(x, y) := x≻ y − y ≻ x,

where ≻ denotes the half-shuffle. For v, w ∈ T (Rd), let

Vt =
⟨︂
v, S(X)0,t

⟩︂
and Wt =

⟨︂
w, S(X)0,t

⟩︂
,

and define

Area(V,W )t :=
∫︂ t

0

∫︂ s

0
dVrdWs −

∫︂ t

0

∫︂ s

0
dWrdVs.

We then have
Area(V,W )t =

⟨︂
area(v, w), S(X)0,t

⟩︂
.

Our naming of area and Area stems from the fact that Area(V,W ) is (two times) the signed area
(see Figure 4.1) enclosed by the two-dimensional curve (V,W ), see [LY06, Proposition 1 (2)]
and the remark on geometric interpretation at the beginning of [DR19, Section 3.2]1 See [CK16,
Section 1.2.4 and Sections 2.1.2-2.1.4] for a detailed discussion of the signed area with lots of
illustrations. Note that the antisymmetrization Area(V,W )t of the Riemann-Stieltjes integral
(where the Riemann-Stieltjes integral forms a Zinbiel algebra on a suitable space of functions V
with V0 = 0) has already been looked at as an algebraic operation by Rocha in 2003 in [Roc03b,
Equation (7)], in [Roc03a, Equation (6.11)] and in 2005 in [Roc05, Equation (2.4)]. It was even
already noted by Rocha in [Roc03b, Section 3, page 321] and [Roc05, Section 2, page 3] that
the operation Area except being antisymmetric does not satisfy any additional identity of order
three.
The following question is inspired by a remark made by T.L. during a talk in 2011:

Is repeated application of the Area operator enough to get the whole signature of a path X?

For d = 2 and the first two levels, this is quickly verified. We start with the increments themselves,
which we assume to be given (we think of them as “0-th order” areas), which are

∫︁
dX1 and∫︁

dX2. Then we can write, using integration-by-parts,∫︂∫︂
dX1dX1 = 1

2

∫︂
dX1 ·

∫︂
dX1∫︂∫︂

dX2dX2 = 1
2

∫︂
dX2 ·

∫︂
dX2∫︂∫︂

dX1dX2 = 1
2

(︂∫︂∫︂
dX1dX2 −

∫︂∫︂
dX2dX1 +

∫︂
dX1 ·

∫︂
dX2

)︂
∫︂∫︂

dX2dX1 = 1
2

(︃
−
(︂∫︂∫︂

dX1dX2 −
∫︂∫︂

dX2dX1
)︂

+
∫︂
dX1 ·

∫︂
dX2

)︃
.

1thanks to Joscha Diehl for pointing the author of this thesis to the exact references here.
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X(0)

X(t1)

X(t2)

X(T )+

−

Figure 4.1: The signed area of a curve X, shown at points t = t1 (shaded blue) and at t = T
(shaded red).

and hence get all iterated integrals up to order 2.
Products of integrals become, on the algebra side, �-products. This reads as

11 = 1
21� 1 22 = 1

22� 2

12 = 1
2 (area(1, 2) + 1� 2) 21 = 1

2 (−area(1, 2) + 1� 2)

In general, however, the expansion is non-unique, as the following example illustrates:

123 = 1
3 area(1, area(2, 3)) + 1

6 area(area(1, 3), 2) + 1
3 1� area(2, 3)

− 1
6 2� area(1, 3) + 1

2 3� area(1, 2) + 1
6 1� 2� 3

= 1
12 area(1, area(2, 3))− 1

12 area(area(1, 3), 2) + 1
4 area(area(1, 2), 3)

+ 1
12 1� area(2, 3) + 1

12 2� area(1, 3) + 1
4 3� area(1, 2) + 1

6 1� 2� 3

To formulate the problem algebraically, let A ⊂ T (Rd) be the smallest linear space containing the
letters 1, . . . , d that is closed under the (bilinear, non-associative) operation area. The question
then becomes:

Is A a generating set for the shuffle algebra T (Rd)?

The affirmative answer to this question is given in this chapter.
What we really have in mind here is a two-stage numerically-stable procedure for calculating the
signature of a physical path. In the first stage one calculates areas, areas of areas and so forth,
possibly using an analog physical apparatus.2 The second stage uses these measurements, say on
a digital computer, and computes polynomial expressions in these.

2One physical device that has historically been used to measure area is a planimeter (see e.g. [FS07]). In
general, this is related to nonholonomic control, see the textbook [Blo15] and also compare the somewhat similar
situation of the rolling ball without slipping at the end of [BD15, Section 3], thanks again to Joscha Diehl for
pointing out these references.
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The rest of the chapter is structured as follows. In the next subsection we fix notation. In Section
4.2 we revisit results by Rocha from [Roc03a], [Roc03b] and [Roc05] in purely algebraic terms.
The outcome of this is a formula for the Dynkin operator applied to the signature. This makes
the area operator appear naturally. Together with Section 4.4 this will prove the generating
property of areas-of-areas.
For completeness, we show in Section 4.3 how to express coordinates of the first kind using only
areas-of-areas. Again, this is basically a purely algebraic revisiting of results by Rocha, in which
we also correct some of the expressions he gives.
In Section 4.4 we state a general condition for a set of polynomials to be (free) generators of
the shuffle algebra T (Rd). We then show how a couple of well-known generators fall into this
formulation and, how using Section 4.2 (or 4.3), the generating property of areas-of-areas is
established in Theorem 4.4.8.
Apart from its geometric interpretation, the area operation possesses some interesting properties.
Some of them we present in Section 4.5, where it is shown that it is nicely compatible with discrete
integration as well as stochastic integration. In Section 4.6 we collect some results on the linear
span generated by the area operator, as it is of interest in its own right.
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4.1.1 Notation

Denote by T ((Rd)) the space of formal infinite linear combinations of words in the letters 1, . . . , d.
Equip it with the concatenation product • (often we write b • b′ = bb′).
Denote by T (Rd) its dual, the space of finite linear combinations of words. Equip it with the
shuffle product �. It decomposes as

a� a′ = a≻ a′ + a′ ≻ a,

where ≻ is the half-shuffle. The half-shuffle is defined on words a = a1 · · · am, b = b1 · · · bn,
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where b is not the empty word, as

a≻ b = (a� b1 · · · bn−1) • bn.

The dual pairing is written for a ∈ T (Rd), b ∈ T ((Rd)) as⟨︂
a, b
⟩︂
.

Denote the grouplike elements of T ((Rd)) by G.Denote the primitive elements, or Lie elements,
of T ((Rd)), i.e. the vector space of formal series built from the free Lie algebra, by g((Rd)).
Denote by projn, proj≥n, etc, the projection on T ((Rd)) to level n, to levels larger equal to n,
. . . We write Tn((Rd)) = projnT ((Rd)), T≥n((Rd)) = proj≥nT ((Rd)), etc. Denote the empty word
by e.
Denote by T ⟨Rd⟩ the free tensor algebra over d generators with coefficients in the ring R, where
R := (T (Rd),�), and by T ⟨⟨Rd⟩⟩ the corresponding space of tensor series. We then canonically
have T ⟨Rd⟩ ⊊ T ⟨⟨Rd⟩⟩, and identify the R-algebra T ⟨⟨Rd⟩⟩ with

W :=
∞∏︂

n=1
T (Rd)⊗ Tn(Rd), (4.1)

where we use the shuffle product on the left and the concatenation product on the right. We
denote the product on both T ⟨⟨Rd⟩⟩ and W, which are isomorphic as R-algebras, by ■. The
R-subalgebra (T ⟨Rd⟩, ■) is then R-algebra-isomorphic to (T (Rd)⊗ T (Rd), ■).
We use the usual grading on T ⟨⟨Rd⟩⟩, that is in the representation (4.1), for a, b words, |a⊗b| :=
|b|. Then, the projection projn makes also sense on W.
We furthermore introduce an R-linear coproduct on T ⟨⟨Rd⟩⟩, which maps to the graded com-
pletion of the R-module tensor product ⊠:

∆� : T ⟨⟨Rd⟩⟩ → T ⟨⟨Rd⟩⟩ ⊠̂ T ⟨⟨Rd⟩⟩ :=
∞∏︂

m,n=1
projmT ⟨⟨Rd⟩⟩⊠ projnT ⟨⟨Rd⟩⟩,

where the unshuffle coproduct on T ⟨⟨Rd⟩⟩ is defined via the usual unshuffle coproduct as

∆�
(︂∑︂

w

aww
)︂

:=
∑︂

w

aw∆�w :=
∑︂

w

aw

�∑︂
(w)

w1 ⊠ w2,

where the last Sweedler summation is well defined by the unshuffle coproduct on T (Rd) because
there is a unique R-linear map T (Rd)⊗T (Rd)→ T ⟨⟨Rd⟩⟩⊠̂T ⟨⟨Rd⟩⟩ characterized by sending each
tensor pair of words w⊗ v to w⊠ v (which is however non-surjective). We have the isomorphism

∞∏︂
m,n=1

T (Rd)⊗ Tm(Rd)⊗ Tn(Rd) ∼= T ⟨⟨Rd⟩⟩ ⊠̂ T ⟨⟨Rd⟩⟩

as R vector spaces given by the map∑︂
w,v

aw,v ⊗ w ⊗ v ↦→
∑︂
w,v

aw,v (w ⊠ v) =
∑︂
w,v

(aw,vw)⊠ v =
∑︂
w,v

w ⊠ (aw,vv).
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The unshuffle coproduct on T ⟨⟨Rd⟩⟩ is an R-algebra homomorphism as a consequence of the
homomorphism property of the usual unshuffle coproduct, as for words w, v we have

∆�(pw ■ qv) = (p� q)∆� w • v = (p� q)
�∑︂

(w),(v)

w1 • v1 ⊠ w2 • v2

=
�∑︂

(w),(v)

(pw1 ■ qw2)⊠ (w2 ■ w1) =
(︂ �∑︂

(w)

pw1 ⊠ w2

)︂
■̃

(︂ �∑︂
(v)

qv1 ⊠ v2

)︂
= (∆�pw) ■̃ (∆�qv), (4.2)

where(︂ ∑︂
w1,v1

aw1,v1w1 ⊠ v1

)︂
■̃

(︂ ∑︂
w2,v2

bw2,v2w2 ⊠ v2

)︂
:=

∑︂
w1,v1,w2,v2

(aw1,v1 � bw2,v2)(w1 ■ w2)⊠ (v1 ■ v2)

is the usual induced product on the tensor product. When restricting to T ⟨Rd⟩, we have ∆� :
T ⟨Rd⟩ → T ⟨Rd⟩ ⊠ T ⟨Rd⟩ and the other compatibility relations of a Hopf algebra are checked
along the same lines, so we indeed get an R-Hopf algebra (T ⟨Rd⟩, ■,∆�, α), a Hopf algebra in
the category of R-modules, with antipode

α
(︂∑︂

w

aww
)︂

=
∑︂

w

(−1)|w|aw
←−w ,

where ←−w is w written backwards.
Now, since we have the homomorphism property of the unshuffle ∆� on T ⟨⟨Rd⟩⟩ according to
Equation (4.2), and furthermore

∆�(i) = e⊠ i + i⊠ e

for any letter i in T ⟨⟨Rd⟩⟩, our ∆� is exactly the coproduct from [Reu93, Section 1.3, page 19]
for the choice of K as the unital commutative ring R with characteristic zero. Thus, we may
apply all the theory in Reutenauer’s book valid for the general setting of an unital commutative
ring of characteristic zero to T ⟨⟨Rd⟩⟩. In particular, we get that the group [Reu93, Corollary 3.3]

G = {g ∈ T ⟨⟨Rd⟩⟩|∆�g = g ⊠ g, g ̸= 0}

with product ■ and the R-Lie-algebra

g⟨⟨Rd⟩⟩ = {x ∈ T ⟨⟨Rd⟩⟩|∆�x = e⊠ x+ x⊠ e}

with Lie bracket [x, y]■ := x ■ y − y ■ x are in a one-to-one correspondence [Reu93, Theorem 3.1
and 3.2] via the exponential map [Reu93, Equation (3.1.2)]

exp
■

: g⟨⟨Rd⟩⟩ → G, exp
■
(x) = e+

∞∑︂
n=1

x■n

n!

with inverse the logarithm [Reu93, Equation (3.1.1)]

log
■

: G→ g⟨⟨Rd⟩⟩, log
■
(g) =

∞∑︂
n=1

(−1)n+1 (g − e)■n

n
.
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Analogous to G and g((Rd)), we call the elements of G grouplike and the elements of g⟨⟨Rd⟩⟩
primitive.
Note however that (T ⟨Rd⟩, ■,∆�) does not form a R Hopf algebra.
Fixing x ∈ T ((Rd)), define for any F =

∑︁
w aw ⊗ w ∈W, where aw ∈ T (Rd) for all words w,

evalx(F ) :=
∑︂

w

⟨x, aw⟩ w ∈ T ((Rd)).

This operation now forms an associative algebra isomorphism from (W, ■) to (L(T ((Rd)), T ((Rd))), ∗),
where L(T ((Rd)), T ((Rd))) denotes the linear maps from T ((Rd)) to T ((Rd)) which are con-
tinuous in the product topology and ∗ denotes the convolution product of the Hopf algebra
(T (Rd), •,∆�) extended to T ((Rd)). Indeed, for any F,G ∈ W, we have eval(F ), eval(G) ∈
L(T ((Rd)), T ((Rd))) by definition with

eval(F ■G) = eval(F ) ∗ eval(G),

since for F =
∑︁

w aw ⊗ w, G =
∑︁

w′ bw′ ⊗ w′, aw, bw ∈ T (Rd) for all words w, and x ∈ T ((Rd)),

evalx(F ■G) =
∑︂
w,w′

⟨x, aw � bw′⟩w • w′ =
∑︂
w,w′

⟨∆�x, aw ⊗ bw′⟩w • w′

=
�∑︂
(x)

∑︂
w

⟨x1, aw⟩w •
∑︂
w′

⟨x2, bw′⟩w′ =
�∑︂
(x)

evalx1(F ) • evalx2(G)

= conc(eval(F )⊗ eval(G))∆�x = (eval(F ) ∗ eval(G))(x),

where
∑︁
�

(x) x1 ⊗ x2 := ∆�x is Sweedler’s notation and conc : T ((Rd)) ⊗̂ T ((Rd)) → T ((Rd)) is
the continuous linear map corresponding to the bilinear map •.
Likewise, for arbitrary y ∈ T (Rd) and F =

∑︁
w aw ⊗ w ∈W, aw ∈ T (Rd), we define

coevaly(F ) :=
∑︂

w

⟨w, y⟩aw ∈ T (Rd).

Then, coeval forms an isomorphism from (W, ■) to (L(T (Rd), T (Rd)), ⋆), where L(T (Rd), T (Rd))
denotes all linear maps from T (Rd) to itself and ⋆ is the convolution product of the Hopf algebra
(T (Rd),�,∆•).
We refer to [Reu93] for more details on all of this, except for the half-shuffle, for which a nice
entry point to the literature is for example [FP13].

4.1.2 Objectives

4.1.2.1 Revisiting the work of Rocha on coordinates of the first kind

In Sections 4.2 and 4.3, we show how the area operation appears naturally in a purely algebraic
formulation of the work of Rocha on coordinates of the first kind. What we may take over from
Rocha here is a very interesting network of bilinear operations on W refining the basic ■ product.
It is based on a dendriform structure, as the following diagram and definition show:
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τ− ⊵ ⊵Sym unknown

⪰ ⪯ pre Lie [·, ·]■ Lie

+ ■ associative

(−)

(+)

dendriform

(−)

For A = p⊗ q, B = p′ ⊗ q′,

A ⪰ B := (p≻ p′)⊗ (q • q′),
A ⪯ B := (p′ ≻ p)⊗ (q • q′),
A ■B := A ⪰ B +A ⪯ B = (p� p′)⊗ (q • q′),
A⊵B := A ⪰ B −B ⪯ A = (p≻ p′)⊗ [q, q′],

A⊵Sym B := A⊵B +B ⊵A = A ⪰ B +B ⪰ A−A ⪯ B −B ⪯ A = area(p, p′)⊗ [q, q′],
[A,B]■ := A ■B −B ■A = A⊵B −B ⊵A = A ⪰ B +A ⪯ B −B ⪰ A−B ⪯ A

= (p� p′)⊗ [q, q′].

In fact, one could describe this network for any dendriform structure, with Rocha’s and our
work offering a promising use case for talking about all of these operations together, while this
system of operations without ⊵Sym has been explored before e.g. in [EM09]. The symmetrized
pre-Lie operation ⊵Sym stays the most mysterious also to us, we may only point to the discovery
of Bergeron and Loday in [BL11, Theorem 3.1] that the symmetrization of pre-Lie does not
in general satisfy any further identities except non-associative commutativity, though since the
pre-Lie product ⊵ certainly isn’t free, we expect some kind of relations for ⊵Sym also, but this
is still a question of future work.
With the area operation forming the left part of the symmetrized pre-Lie operation ⊵Sym, we
obtain our main argument to show that the set of all areas of areas forms a shuffle generating
set, albeit not a minimal one.

4.1.2.2 Areas of areas and further shuffle generating sets

With our main focus being shuffle-generating sets in terms of areas of areas, in Section 4.4 we
first give a general criterion Lemma 4.4.2 for (homogeneous) subsets to form a shuffle generating
set (resp. a free shuffle generating set), the condition being that the set contains (resp. forms)
a dual basis to some basis of the free Lie algebra g(Rd) ⊊ T (Rd). While our actual hands-on
proof is based on the characterization of the annihilator of the free Lie algebra which we cite
from [Reu93, Theorem 3.1 (iv)], we sketch a more abstract argument in Remark 4.4.3 related to
the Cartier-Milnor-Moore theorem.
We continue by illustrating how our statement can be applied to some known shuffle generating
sets, as well as to the image of ρ (the dual of the Dynkin map, Section 4.2), which concludes one
of our proofs that areas-of-areas generate the shuffle algebra.
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4.1.2.3 The area Tortkara algebra

We study the smallest linear subspace A ⊊ T (Rd) closed under the area operation and containing
the letters in Section 4.6. Thanks to the work by Dzhumadil’daev, Ismailov and Mashurov, we
can use the categorial framework of Tortkara algebras, where the objects are characterized as
vector spaces with a bilinear antisymmetric operation which furthermore satisfies the Tortkara
identity, and the morphisms are homomorphisms of the bilinear operations as usual. Also thanks
to [DIM19, Section 3], we have a simple linear basis of A in terms of linear combinations of words,
see Lemma 4.6.2. We continue by a very important conjecture that the left bracketings of the
area operation yield another basis of A , which was shown for dimension two in both [DIM19,
Section 5] and [Rei19, Section 3.2, Theorem 31]. The rest of the section is dedicated to some
interesting observations we made while, so far unsuccessfully, trying to prove that conjecture for
any dimension.

4.1.2.4 Applications and characterizations

In Section 4.5 we are connecting the purely algebraic considerations of this chapter with the
world of (deterministic and probabilistic) path spaces and iterated-integrals signatures on these
path spaces, as they have been the motivation for this work to begin with. What we are generally
looking at are characterizations of the area Tortkara algebra A in terms of special properties
for given path spaces, like the space of piecewise linear paths (Subsection 4.5.1). The case of
piecewise linear paths promises in fact to develop into the main application of the study of areas
of areas. They form the most common discretization of general continuous paths that one works
with when actually computing iterated-integrals signature numerically, in machine learning for
example. It turns out that for piecewise linear paths, the computation of discrete areas is much
simpler and better behaved than the computation of discrete integrals.
However, besides the discrete deterministic setting, the study of signatures has, since Lyons’
theory of rough paths, been intimately related with stochastic analysis, and we observe how areas
of areas preserve the martingale property central in stochastic analysis, while general iterated
Stratonovich integrals fail to do so.

4.1.3 Summerized proof of the main result

We give three proofs of the fact that areas-of-areas shuffle generate the tensor algebra, which is
Theorem 4.4.8.

4.1.3.1 Via Λ and coordinates of the first kind

Using Dw =
∑︁

uv=w, |u|≥1 ρ(u)� v, adP = AdP for any Lie polynomial P and
∑︁

w w ⊗ r(w) =∑︁
w ρ(w)⊗ w, we showed (D − id)R = R⊵R (Lemma 4.2.6).

We then have R ∈ R due to R1 =
∑︁d

i=1 i⊗ i and Rn = 1
2(n−1)

∑︁n−1
l=1 Rl ⊵Sym Rn−l (Corollary

4.2.8).
Using R = r exp

■
Λ and Baker’s identity for r (Lemma 4.3.3), we show that Λn is a linear

combination of Rn and ■-Lie-bracketings of lower order Λi. Thus Λ ∈ L, and together with the
fact ζh = coevalP

∗
h (Λ) following from the definition of Λ we conclude that each ζh is a linear

combination of shuffles of areas of areas.
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4.1.3.2 Via R and ρ

From R ∈ R we conclude that the image of ρ lies in A , since ρ(v) = coevalv(R) for any word
v. Since the image of ρ shuffle generates the shuffle algebra, Point 3.2 in Corollary 4.4.5, so does
A .

4.1.3.3 Via [DIM19] and ρ

Via a combinatorial expression for ρ(12 . . . d) for any d (Proposition 4.6.13) we conclude (Corol-
lary 4.6.14) that the image of ρ is a subspace of

spanR{i : i a letter } ⊕ spanR{w(ij− ji) : w a word, i, j letters},

which is nothing but A , according to [DIM19, Theorem 2.1]. Again, since ρ shuffle generates
the shuffle algebra, so do areas of areas.

4.2 The Dynkin operator

We recall the linear maps r,D : T ((Rd))→ T ((Rd)) from [Reu93, Section 1, pages 19-20]. The
linear right-bracketing map or Dynkin operator r is given on a word w = l1 · · · ln as

r(l1 · · · ln) := [l1, [l2, . . . [ln−1, ln]]], (4.3)

with r(e) = 0 and r(i) = i for any letter i. The map D (for derivation) is given on a word w as

D(w) := |w|w,

where |w| is the length of the word. On T≥1((Rd)), D is invertible with inverse D−1(w) = 1
|w|w.

Remark 4.2.1. 1. The seemingly simple Dynkin operator r has found several applications. It for
example characterizes Lie elements of T ((Rd)) [Reu93, Theorem 3.1 (vi)]: x ∈ T ((Rd)) is a Lie
series if and only if ⟨e, x⟩ = 0 and r(x) = D(x). See also [PR02b, Section 3], [Gar90, Section 1,
2 and 4] and references therein. In the analysis of numerical schemes it is used for example in
[LM13, Section 2.4].
2. Truncated at a fixed level, the grouplike elements / signatures of tree-reduced paths, form a
Lie group. The Dynkin operator r is a logarithmic derivative, i.e. the derivative pulled-back to
the tangent space at the identity, of an endomorphism of this group in the following sense (see
[MP13] for more on this). Let δϵ be the dilation operator, i.e. the operation on tensors which
multiplies each level m by ϵm, which corresponds to dilating or scaling a path by the factor ϵ.
For g ∈ G, let gϵ := δϵg. Then (cf. [MP13, Equation on the bottom of page 906, Section 3.2])

(︁ d
dϵ
gϵ
)︁
• (gϵ)−1 =

(︁ d
dϵ
gϵ
)︁
• α[gϵ] =

(︁ 1
ϵD[gϵ]

)︁
• α[gϵ] = 1

ϵ

(︁
conc ◦ (D ⊗ α)

)︁
[gϵ ⊗ gϵ]

= 1
ϵ

(︁
conc ◦ (D ⊗ α) ◦∆�

)︁
[gϵ] as gϵ ∈ G, [Reu93, Theorem 3.2]

= 1
ϵ r[g

ϵ], see [Reu93, Lemma 1.5 or Section 1, page 32]

where α is the antipode extended from T (Rd) to T ((Rd)) (which is the inverse in the Lie group,
and corresponds to reversing a path), ⊗ is the external tensor product, conc is the linear map
taking a⊗ b to a • b, and ∆� is the unshuffle coproduct, which in [Reu93] is denoted with δ.
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Let r, D, D−1 act on W by letting r,D,D−1 act on the right side of the tensor, i.e.

r(a⊗ b) := a⊗ r(b)
D(a⊗ b) := a⊗D(b)

D−1(a⊗ b) := a⊗D−1(b).

Define3

S :=
∑︂

w

w ⊗ w

R := r(S) =
∑︂

w

w ⊗ r(w) =
∑︂

v

ρ(v)⊗ v. (4.4)

Both are elements of W. The last equality implicitly defines ρ. There also exists a recursive
definition given by ρ(e) = 0, ρ(i) = i for any letter i and

ρ(iwj) = iρ(wj)− jρ(iw) (4.5)

for any (empty or non-empty) word w and letters i, j, see [Reu93, Equation (1.5.10)]. Based
on this recursion, we derive an expansion of ρ via an action of elements of the symmetric group
algebra in Proposition 4.6.13. We repeat that r(e) = ρ(e) = 0, so the sum in (4.4) is actually
only taken over words of strictly positive length.
We record the following for future use [Reu93, Theorem 1.12]: For any word w4

Dw =
∑︂

uv=w

ρ(u)� v =
∑︂

uv=w,|u|≥1

ρ(u)� v. (4.6)

Note that this yields yet another recursive definition of ρ:

ρ(e) = 0, ρ(w) = |w|w −
∑︂

uv=w
|u|,|v|≥1

ρ(u)� v,

where w is an arbitrary non-empty word.

Proposition 4.2.2. The map r : G → g((Rd)) is invertible. To be specific, define for x ∈
T≥1((Rd)) the linear map

Ax : T ((Rd))→ T ((Rd))
z ↦→ D−1(xz).

Then for x ∈ g((Rd))

r−1[x] =
∑︂
ℓ≥0

Aℓ
xe (4.7)

= e+D−1(x) +D−1(xD−1(x)) +D−1(xD−1(xD−1(x))) + . . .

3From now on, if we sum over a variable with no given index set, we sum over all words in the alphabet 1, . . . , d,
including the empty word e.

4If |w| = 0 then both sides are equal to zero.
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Equivalently, with ARz := D−1[R ■ z],

S =
∑︂
ℓ≥0

(AR)ℓ(e⊗ e) (4.8)

= e⊗ e+D−1[R] +D−1[R ■D−1[R]] +D−1[R ■D−1[R ■D−1[R]]] + . . . ,

Remark 4.2.3. Compare [EGP07, Theorem 4.1] for a statement in a more general setting.

Proof of Theorem 4.2.2. The claimed equivalence is shown as follows. For t ∈ W, with zero
coefficient for e⊗ e,

evalg(D−1(t)) = D−1(evalg(t)).

Hence

g = e+D−1(r(g)) +D−1(r(g)D−1(r(g))) + . . . ∀g ∈ G
⇔

evalg(S) = evalg(e) +D−1(evalg(R)) +D−1(evalg(R)D−1(evalg(R))) + . . . ∀g ∈ G
= evalg(e) + evalg(D−1(R)) + evalg(D−1(R ■D−1(R))) + . . .

⇔
S = e+D−1(R) +D−1(R ■D−1(R)) + . . . ,

where we used the homomorphism property of evalg and the fact that grouplike elements linearly
span T ((Rd)) projectively (i.e. truncated, at level n, grouplike elements linearly span T≤n((Rd))).
We now show (4.7). Write x := r[g] = D[g] • g−1 (compare Remark 4.2.1.2). Then

g = e+D−1[x • g],

i.e.

g = e+Axg. (4.9)

Now since x does not contain a component in the empty word, this actually amounts to a recursive
formula,

proj0g = e, projng =
n∑︂

m=1
Aprojmx(projn−mg), n ≥ 1

and thus Equation (4.9) has a unique solution. Hence

g =
∑︂
ℓ≥0

Aℓ
xe,

since the series converges due to being a finite sum for each homogeneous component and obvi-
ously provides a solution for Equation (4.9).
This shows that (4.7) gives a left-inverse.
It is also a right inverse. Indeed, first note that for x ∈ g((Rd)) and n ≥ 2 we have r[An

xe] = 0.
For n = 2, using Lemma 4.3.3, this follows from

r[A2
xe] = r[D−1(xD−1(x))] = D−1(r[xD−1(x)]) = D−1(r[r[D−1x]D−1(x)])

= D−1([r[D−1x], r[D−1(x)]]) = 0.
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Assume it is true for An−1
x , then

r[An
xe] = r[D−1(xAn−1

x e)] = D−1(r[xAn−1
x e]) = D−1(r[r[D−1x]An−1

x e])
= D−1([r[D−1x], r[An−1

x e]]) = 0.

Hence

r[e+D−1(x) +D−1(xD−1(x)) + . . .] = x,

so that the Lemma indeed provides a right inverse.

Definition 4.2.4. Define the following product on W,

(p⊗ q)⊵ (p′ ⊗ q′) := (p≻ p′)⊗ [q, q′],

where [., .] is the Lie bracket in T ((Rd)) and ≻ is the half-shuffle in T (Rd).

Remark 4.2.5. This product is pre-Lie, as the tensor product of a Zinbiel algebra and a Lie
algebra is always a pre-Lie algebra (this is shown in Rocha’s thesis as [Roc03a, Proposition 4.13
and Corollary 4.14], though there the terminology ‘chronological algebra’ is used to mean what we
call pre-Lie algebra), although we will not use this fact. It comes from the dendriform structure

(p⊗ q) ⪰ (p′ ⊗ q′) := (p≻ p′)⊗ qq′

(p⊗ q) ⪯ (p′ ⊗ q′) := (p′ ≻ p)⊗ qq′,

i.e. x⊵y = x ⪰ y−y ⪯ x. Indeed, the operations ⪰ and ⪯ together satisfy the three dendriform
identities (e.g. [Lod01, Definition 5.1] or [EM09, Equations (8)-(10)]), which is a straightforward
consequence of the Zinbiel identity of the halfshuffle and the associativity of the concatenation,

(A ⪯ B) ⪯ C = (p3 ≻ (p2 ≻ p1))⊗ q1q2q3 = ((p3 ≻ p2)≻ p1)⊗ q1q2q3 + ((p2 ≻ p3)≻ p1)⊗ q1q2q3

= A ⪯ (B ⪯ C) +A ⪯ (C ⪯ B),
A ⪰ (B ⪰ C) = (p1 ≻ (p2 ≻ p3))⊗ q1q2q3 = ((p1 ≻ p2)≻ p3)⊗ q1q2q3 + ((p2 ≻ p1)≻ p3)⊗ q1q2q3

= (A ⪰ B) ⪰ C + (B ⪰ A) ⪰ C,
(A ⪰ B) ⪯ C = (p3 ≻ (p1 ≻ p2))⊗ q1q2q3 = ((p3 ≻ p1 + p1 ≻ p3)≻ p2)⊗ q1q2q3

= (p1 ≻ (p3 ≻ p2))⊗ q1q2q3 = A ⪰ (B ⪯ C),

for A = p1 ⊗ q1, B = p2 ⊗ q2, C = p2 ⊗ q3.
For more background on pre-Lie products and this relation to dendriform algebras see for example
[EM09] and references therein.

The object R satisfies a quadratic fixed-point equation.

Lemma 4.2.6.

(D − id)R = R⊵R. (4.10)

Proof. Let |w| ≥ 1. Starting from (4.6) and concatenating a letter a from the right on both
sides, we get ∑︂

uv=w,|u|≥1

(ρ(u)� v)a = (Dw)a = (D − id)(wa).
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Hence ∑︂
uv=w,|u|≥1

ρ(u)≻ va = (D − id)(wa),

which means, for |w̄| ≥ 2, ∑︂
uv=w̄,|u|≥1,|v|≥1

ρ(u)≻ v = (D − id)w̄. (4.11)

Recall

adv w = [v, w]
Adv w = [k1, [k2, . . . , [kn, w] . . .]],

where v = k1 · · · kn. By [Reu93, Theorem 1.4], for a Lie polynomial P one has

adP = AdP . (4.12)

For a word w define the linear map Iw as

Iwx := w ≻ x,

and extend linearly to the whole tensor algebra. The map

I• ⊗ ad• : W→ HomR
(︁
W,W

)︁
,

is defined as

(Ix ⊗ ady)a⊗ b = (Ixa)⊗ (ady b).

Now

(I• ⊗ ad•)R = (I• ⊗ ad•)
∑︂

w ⊗ r(w) = (I• ⊗Ad•)
∑︂

w ⊗ r(w) = (I• ⊗Ad•)
∑︂

ρ(v)⊗ v

=
∑︂

|v|≥1

Iρ(v) ⊗Adv,

where we used (4.12) and then (4.4). Then

R⊵R = ((I• ⊗ ad•)R)R =

⎛⎝∑︂
|v|≥1

Iρ(v) ⊗Adv

⎞⎠ ∑︂
|w|≥1

w ⊗ r(w) =
∑︂

|v|,|w|≥1

(ρ(v)≻ w)⊗ r(vw)

=
∑︂

|x|≥2

∑︂
vw=x,|v|,|w|≥1

(ρ(v)≻ w)⊗ r(vw) =
∑︂

|x|≥2

(|x| − 1)x⊗ r(x)

=
∑︂

|x|≥2

x⊗
(︁
(|x| − 1)r(x)

)︁
=
∑︂

|x|≥2

x⊗ r[(D − id)x] = (D − id)R.

Remark 4.2.7. We sketch the connection to the ODE approach of [Roc03b]. Let Sε
t := δεS(X)t

be the signature at time t, dilated by a factor ε > 0. Define

Zε
t := d

dε
Sε

t • (Sε
t )−1,
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which, as we have seen in Remark 4.2.1.2, is equal to ε−1r[Sε
t ]. One can show (see [AGS89,

Equation (1.8), (3.3) and (3.7)], where again pre-Lie algebras are called ’chronological algebras’),
that Zε

t satisfies

∂εZ
ε
t =

∫︂ t

0

[︁
Zε

r , Ż
ε
r

]︁
dr, (4.13)

where [., .] is the Lie bracket in g((Rd)). We may give an alternative proof of (4.13) based on the
quadratic fixed-point equation (4.10). For the left-hand side,

∂εZ
ε
t = ∂ε

(︁
ε−1r[Sε

t ]
)︁

= −ε−2r[Sε
t ] + ε−1r[∂εS

ε
t ] = −ε−2r[Sε

t ] + ε−2r[DSε
t ] = ε−2r[(D − id)Sε

t ]

= ε−2
∑︂

w

⟨Sε
t , w⟩ r[(D − id)w] = ε−2evalSε

t
[(D − id)R],

Aiming at the right-hand side, we first note that in general for p⊗ q, p′ ⊗ q′ ∈W, we have∫︂ t

0

[︂⟨︂
Ss, p

⟩︂
q,
⟨︂
Ṡs, p

′
⟩︂
q′
]︂
ds =

∫︂ t

0

⟨︂
Ss, p

⟩︂
d
⟨︂
Ss, p

′
⟩︂

[q, q′] =
⟨︂
St, p≻ p′

⟩︂
[q, q′]

= evalSt [(p⊗ q)⊵ (p′ ⊗ q′)] .

This implies∫︂ t

0

[︁
Zε

r , Ż
ε
r

]︁
dr = ε−2 [︁r[Sε

t ], r[Ṡε
t ]
]︁

= ε−2
∑︂

w

∑︂
w′

∫︂ t

0

[︂⟨︂
Sε

s , w
⟩︂
r[w],

⟨︂
Ṡε

s , w
′
⟩︂
r[w′]

]︂
ds

= ε−2
∑︂

w

∑︂
w′

evalSε
t
[(w ⊗ r[w])⊵ (w′ ⊗ r[w′])] = ε−2evalSε

t
[R⊵R].

Putting things together, we thus have that (4.13) is equivalent to

evalSε
t
[(D − id)R] = evalSε

t
[R⊵R].

which is of course an immediate consequence of (4.10).

By symmetrizing the pre-Lie product in the quadratic fixed point equation (4.10), we make the
area-operator appear. Define

(p⊗ q)⊵Sym (p′ ⊗ q′) := (p⊗ q)⊵ (p′ ⊗ q′) + (p′ ⊗ q′)⊵ (p⊗ q)
= area(p, p′)⊗ [q, q′].

Symmetrized pre-Lie products like this were already introduced by Rocha in [Roc03a, Equation
(6.13) and Proposition 6.3].

Corollary 4.2.8 (based on [?, Proposition 6.8]). We have

(D − id)R = 1
2R⊵Sym R.

Let Rn := projnR =
∑︁

|w|=n w ⊗ r[w] be the n-th level of R. Then for n ≥ 2 this spells out as

(n− 1)Rn = 1
2

n∑︂
ℓ=1

Rℓ ⊵Sym Rn−ℓ =
{︄∑︁(n−1)/2

ℓ=1 Rℓ ⊵Sym Rn−ℓ n odd∑︁n/2
ℓ=1 Rℓ ⊵Sym Rn−ℓ + 1

2Rn/2 ⊵Sym Rn/2 n even

with Rn ∈ R := ⟨i⊗ i, i = 1 . . . d;⊵Sym⟩.
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Proof. This follows immediately from Lemma 4.2.6.

Remark 4.2.9. Note that [Roc03a, Proposition 6.8] has a slightly more complicated recursion.
This stems from the fact that the Zn there relates to our Rn

n! here.

Example 4.2.10. Let Rn := projnR be the n-th level of R. Then Lemma 4.2.6 and Corollary
4.2.8 give

R2 = R1 ⊵R1 = 1
2R1 ⊵Sym R1

2R3 = R1 ⊵R2 +R2 ⊵R1 = 1
2R1 ⊵Sym R2 + 1

2R2 ⊵R1 = R1 ⊵Sym R2

3R4 = R1 ⊵R3 +R2 ⊵R2 +R3 ⊵R1 = 1
2R1 ⊵Sym R3 + 1

2R2 ⊵Sym R2 + 1
2R3 ⊵Sym R1

= R1 ⊵Sym R3 + 1
2R2 ⊵Sym R2

For d = 2 this becomes

R1 = 1⊗ 1 + 2⊗ 2

R2 = 1
2 (area(1, 2)⊗ [1, 2] + area(2, 1)⊗ [2, 1])

R3 = 1
4

(︂
area(1, area(1, 2))⊗ [1, [1, 2]] + area(1, area(2, 1))⊗ [1, [2, 1]]

+ area(2, area(1, 2))⊗ [2, [1, 2]] + area(2, area(2, 1))⊗ [2, [2, 1]]
)︂

R4 = 1
12

(︂
area(1, area(1, area(1, 2)))⊗ [1, [1, [1, 2]]] + area(1, area(1, area(2, 1)))⊗ [1, [1, [2, 1]]]

+ area(1, area(2, area(1, 2)))⊗ [1, [2, [1, 2]]] + area(1, area(2, area(2, 1)))⊗ [1, [2, [2, 1]]]
+ area(2, area(1, area(1, 2)))⊗ [2, [1, [1, 2]]] + area(2, area(1, area(2, 1)))⊗ [2, [1, [2, 1]]]

+ area(2, area(2, area(1, 2)))⊗ [2, [2, [1, 2]]] + area(2, area(2, area(2, 1)))⊗ [2, [2, [2, 1]]]
)︂

In general this looks as follows.

Definition 4.2.11. Denote by BPTn the set of (complete, rooted) binary planar trees with n
leaves labelled with the letters 1, . . . , d. Given τ ∈ BPTn we define area (τ) (resp. lie (τ)) as the
bracketing-out using area (resp. [., .]). For example

area (
1 2

3) = area(1, area(2, 3))

lie (
1 2 3 4

) = [[1, 2], [3, 4]].

Define a function c : BPTn → R, which does not depend on the specific letter labels, recursively
as follows

c(i) = 1 for any i in 1, . . . , d

c(τ1 τ2 ) = 2c(τ1)c(τ2)(|τ1|leaves + |τ2|leaves − 1)
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where |τ |leaves denotes the number of leaves of the tree τ . For example

c(2) = 1
c(1 2) = 2 · 1 · 1 · (2− 1) = 2

c(3
1 2

) = 2 · 1 · 2 · (3− 1) = 8

Lemma 4.2.12 (based on [Roc03a, Lemma 6.11], [Roc03b, Lemma 1]).

Rn =
∑︂

τ∈BPTn

1
c(τ) area (τ)⊗ lie (τ).

Remark 4.2.13. We note that [Roc03a, Lemma 6.11] and [Roc03b, Lemma 1] have a slightly
more complicated expression for Rn, since there some of the terms are factored out, owing to
antisymmetry. We do not pursue this here since the end result, also in Rocha’s work, still
contains redundant terms, which we do not know how to explicitly get rid of. In fact, due to
antisymmetry alone, we already know that c(τ) is not a unique choice for this equation to hold,
however it remains an interesting and more involved question if it is the only choice which is
symmetric, i.e. well-defined on non-planar trees, and invariant under change of the leaf labels.
A further very interesting question is to find a modified c′ which may not be symmetric and
may depend on the leaf labels, such that the equations still hold, but such that the number of
non-zero summands in the equation is minimized for each n.

Proof of 4.2.12. For the purpose of this proof, let Rn be defined as in Corollary 4.2.8 and

R′
n :=

∑︂
τ∈BPTn

1
c(τ) area (τ)⊗ lie (τ).

We proceed by induction over n. We have

R1 =
∑︂

|w|=1

w ⊗ r(w) =
∑︂

|w|=1

w ⊗ w =
∑︂

|w|=1

1
c(w)area (w)⊗ lie (w) = R′

1.

Assuming Rn = R′
n holds for some n ∈ N, we get

Rn+1 = 1
2n

n+1∑︂
l=1

Rl ⊵Sym Rn−l

= 1
2n

n+1∑︂
l=1

∑︂
τ1∈BPTl,

τ2∈BPTn+1−l

1
c(τ1)c(τ2)area(area (τ1), area (τ2))⊗ [lie (τ1), lie (τ2)]

=
n+1∑︂
l=1

∑︂
τ1∈BPTl,

τ2∈BPTn+1−l

1
c(τ1 τ2 )

area (τ1 τ2 )⊗ lie (τ1 τ2 )

=
∑︂

τ∈BPTn+1

1
c(τ)area (τ)⊗ lie (τ) = R′

n+1.

Rather than working with the recursion for Rn from Corollary 4.2.8 directly on T ⟨⟨Rd⟩⟩, in the
following theorem we will pursue the alternative approach of first applying the coevalP

∗
h to work

on T (Rd), or, to be more specific, on A as we will see.
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Theorem 4.2.14. We have R =
∑︁

h rh ⊗ Ph where rh := ρ(Sh) satisfies the recursion

rh = 1
|h| − 1

∑︂
h1<h2

⟨P ∗
h , [Ph1 , Ph2 ]⟩ area(rh1 , rh2). (4.14)

More explicitly, we have

rh =
∑︂

τ

1
b(τ)q

h
τ area (τ) =

∑︂
τ

1
c(τ)p

h
τ area (τ)

with

qh
τ =

∑︂
h1<h2

qh1
τ ′ q

h2
τ ′′⟨P ∗

h , [Ph1 , Ph2 ]⟩,

ph
τ = ⟨P ∗

h , lie (τ)⟩ =
∑︂

h1,h2

qh1
τ ′ q

h2
τ ′′⟨P ∗

h , [Ph1 , Ph2 ]⟩

for |τ |leaves, |h| ≥ 2 and

qh
i = ph

i = δh,i,

qi
τ = pi

τ = δτ,i

with b(τ) = b(τ ′)b(τ ′′)(|τ ′|leaves + |τ ′′|leaves − 1), b(i) = 1.

Proof. We have r = eval(R) with Im r = g(Rd) and thus

r = r ◦ eval(
∑︂

h

Sh ⊗ Ph) = eval
(︂∑︂

w,h

⟨w, Sh⟩ρ(w)⊗ Ph

)︂
= eval

(︂∑︂
h

ρ(Sh)⊗ Ph

)︂
,

which means R =
∑︁

h ρ(Sh)⊗ Ph since eval is bijective. Putting rh := ρ(Sh), we get

∑︂
h

(|h| − 1)rh ⊗ Ph = (D − id)R = 1
2 R⊵Sym R = 1

2

∑︂
h1,h2

area(rh1 , rh2)⊗ [Ph1 , Ph2 ],

which by applying coevalP
∗
h on both sides yields

(|h| − 1)rh = 1
2

∑︂
h1,h2

⟨P ∗
h , [Ph1 , Ph2 ]⟩area(rh1 , rh2) =

∑︂
h1<h2

⟨P ∗
h , [Ph1 , Ph2 ]⟩area(rh1 , rh2).

Since due to qi
τ = δτ,i and b(i) = 1 we have

ri = ρ(i) = i = area (i) =
∑︂

τ

1
b(τ)q

i
τ area (τ),
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we obtain by induction

rh = 1
|h| − 1

∑︂
h1<h2

⟨P ∗
h , [Ph1 , Ph2 ]⟩area(rh1 , rh2)

= 1
|h| − 1

∑︂
h1<h2

⟨P ∗
h , [Ph1 , Ph2 ]⟩

∑︂
τ1,τ2

1
b(τ1)b(τ2)q

h1
τ1
qh2

τ2
area(area (τ1), area (τ2))

=
∑︂

τ1,τ2

1
(|h| − 1)b(τ1)b(τ2)

∑︂
h1<h2

qh1
τ1
qh2

τ2
⟨P ∗

h , [Ph1 , Ph2 ]⟩area (τ1 τ2 )

=
∑︂

τ

1
(|τ ′|leaves + |τ ′′|leaves − 1)b(τ ′)b(τ ′′)

∑︂
h1<h2

qh1
τ ′ q

h2
τ ′′⟨P ∗

h , [Ph1 , Ph2 ]⟩area (τ)

=
∑︂

τ

1
b(τ)q

h
τ area (τ)

Furthermore, due to Lemma 4.2.12, we have

rh = coevalP
∗
h (r|h|) =

∑︂
τ∈BPT|h|

1
c(τ) ⟨P

∗
h , lie (τ)⟩area (τ) =

∑︂
τ

1
c(τ)p

h
τ area (τ),

where we have ph
i = ⟨P ∗

h , lie (i)⟩ = ⟨P ∗
h , i⟩ = δh,i as well as pi

τ = ⟨P ∗
i , lie (τ)⟩ = ⟨i, lie (τ)⟩ = δτ,i

and by induction over |τ |leaves ≥ 2

ph
τ = ⟨P ∗

h , lie (τ)⟩ = ⟨P ∗
h , [lie (τ ′), lie (τ ′′)]⟩ =

∑︂
h1,h2

⟨P ∗
h , [⟨P ∗

h1
, lie (τ ′)⟩Ph1 , ⟨P ∗

h2
, lie (τ ′)⟩Ph2 ]⟩

=
∑︂

h1,h2

ph1
τ ′ p

h2
τ ′′⟨P ∗

h , [Ph1 , Ph2 ]⟩.

Remark 4.2.15. Let h(τ) be the Hall word corresponding to the Hall tree τ . Then,

qh0
τ = ph0

τ = δh(τ),h0 .

This is immediate by definition of q for |h(τ)| = |τ |leaves = 1, and then by induction over |τ |leaves if
τ is a Hall tree, then τ ′, τ ′′ are Hall trees and thus

qh
τ =

∑︂
h1<h2

qh1
τ ′ q

h2
τ ′′⟨P ∗

h , [Ph1 , Ph2 ]⟩ =
∑︂

h1<h2

δh(τ ′),h1δh(τ ′′),h2⟨P
∗
h , [Ph1 , Ph2 ]⟩

= ⟨P ∗
h , [Ph(τ ′), Ph(τ ′′)]⟩ = δh(τ),h

due to (Ph)h and (P ∗
h )h being dual bases. For ph

τ = ⟨P ∗
h , lie (τ)⟩ the claim is immediate.

Note furthermore that we could also have derived

rh =
∑︂

τ

1
b(τ)q

h
τ area (τ)

from
rh =

∑︂
τ

1
c(τ)p

h
τ area (τ)

by looking at how qh
τ and ph

τ relate to each other.
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Example 4.2.16. In the case of T (R2) and the Lyndon words H, the values of rh up to level
five are

r1 = 1, r2 = 2,

r12 = 12− 21 = area(1, 2),
r112 = 112− 121 = 1

2 area(1, area(1, 2)),
r122 = −212 + 221 = 1

2 area(area(1, 2), 2),
r1112 = 1112− 1121 = 1

6 area(1, area(1, area(1, 2)))
r1122 = −1212 + 1221− 2112 + 2121 = 1

6 area(1, area(area(1, 2), 2)) + 1
6 area(area(1, area(1, 2)), 2),

r1222 = 2212− 2221 = 1
6 area(area(area(1, 2), 2), 2),

r11112 = 11112− 11121,

r11122 = −11212 + 11221− 12112 + 12121− 21112 + 21121,

r11222 = 12212− 12221 + 21212− 21221 + 22112− 22121,

r12122 = 21212− 21221 + 22112− 22121,

r11212 = 21112− 21121,

r12222 = −22212 + 22221,

where we gave the area bracketings according to the recursion Equation (4.14) up to level four.
The trend of the values being just −1, 0, 1 combinations of words does not continue to higher
levels, e.g.

r112212 = −211212 + 211221− 212112 + 212121− 3 221112 + 3 221121.

Example 4.2.17. In the case of T (R3) and the Lyndon words H, the values of rh up to level
four which are not immediate from the previous example are

r123 = 123− 132− 312 + 321,

r132 = −213 + 231− 312 + 321,

r1123 = 1123− 1132− 1312 + 1321− 3112 + 3121,

r1132 = −1213 + 1231− 1312 + 1321− 2113 + 2131− 3112 + 3121,

r1213 = −2113 + 2131 + 3112− 3121,

r1223 = 1223− 1232 + 3212− 3221,

r1232 = −2123 + 2132 + 2312− 2321 + 2 3212− 2 3221,

r1233 = −1323 + 1332− 3123 + 3132 + 3312− 3321,

r1322 = 2213− 2231 + 2312− 2321 + 3212− 3221,

r1323 = −3123 + 3132 + 3213− 3231 + 2 3312− 2 3321,

r1332 = 2313− 2331 + 3213− 3231 + 3312− 3321.

Example 4.2.18. In the case of T (R2) and the standard Hall words H, the values of rh up to
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level five are

r1 = 1, r2 = 2,

r12 = 12− 21,

r121 = −112 + 121,

r122 = −212 + 221,

r1211 = 1112− 1121,

r1221 = 1212− 1221 + 2112− 2121,

r1222 = 2212− 2221,

r12111 = −11112 + 11121,

r12211 = −11212 + 11221− 12112 + 12121− 21112 + 21121,

r12221 = −12212 + 12221− 21212 + 21221− 22112 + 22121,

r12222 = −22212 + 22221,

r12112 = −21112 + 21121,

r12212 = −21212 + 21221− 22112 + 22121,

where once again the trend of the values being just −1, 0, 1 combinations of words does not
continue to higher levels, e.g.

r122112 = 121212− 121221 + 122112− 122121 + 2 211212− 2 211221

+ 2 212112− 2 212121 + 3 221112− 3 221121.

4.3 Coordinates of the first kind

Let (Ph)h∈H be a basis for the free Lie algebra g(Rd). For the index set H we have a Hall set
in mind ([Reu93, Section 4.1 and 4.2]), but this is not necessary at this stage. Any grouplike
element g ∈ G can be written as the exponential of a Lie series,

g = exp
(︄∑︂

h∈H

ch(g)Ph

)︄
, (4.15)

for some uniquely determined ch(g) ∈ R. In fact, there exist unique ζh ∈ T (Rd), h ∈ H such
that ch(g) =

⟨︂
ζh, g

⟩︂
. The ζh are called the coordinates of the first kind (corresponding to

(Ph)h∈H), see for example [Kaw09, page 1037].
We now formulate this in a way, where we do not have to test against g ∈ G. Recall the product
■ on W: shuffle product on the left and concatenation product on the right.
For words a, b

evalg(a⊗ b) • evalg(a′ ⊗ b′) =
⟨︂
a, g
⟩︂ ⟨︂

a′, g
⟩︂
bb′ =

⟨︂
a� a′, g

⟩︂
bb′

= evalg
(︂

(a� a′)⊗ (b • b′)
)︂

= evalg
(︂

(a⊗ b) ■ (a′ ⊗ b′)
)︂
.

Both expressions are bilinear, so this is true for general elements in W. Hence evalg is an algebra
homomorphism from (W, ■) to (T ((Rd)), •). Then on one hand, using first (4.15) and then the
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homomorphism property

g = exp
(︄∑︂

h∈H

chPh

)︄
= exp

(︄∑︂
h∈H

⟨ζh, g⟩Ph

)︄
= exp

(︄
evalg

(︄∑︂
h∈H

ζh ⊗ Ph

)︄)︄

= evalg

(︄
exp

■

(︄∑︂
h∈H

ζh ⊗ Ph

)︄)︄
.

Here, of course, for x ∈W,

exp
■
(x) :=

∑︂
n≥0

x■n

n! :=
∑︂
n≥0

n times⏟ ⏞⏞ ⏟
x ■ · · · ■ x

n! .

On the other hand, trivially

g =
∑︂

w

⟨w, g⟩ w = evalg

(︄∑︂
w

w ⊗ w

)︄
.

Since grouplike elements projectively span all of T ((Rd)), with that we mean span(proj≤nGd) =
T≤n(Rd) (e.g. [DR19, Lemma 3.4]), we get that for all x ∈ T ((Rd))

evalx

(︄
exp

■

(︄∑︂
h∈H

ζh ⊗ Ph

)︄)︄
= evalx

(︄∑︂
w

w ⊗ w

)︄
,

which is equivalent to ∑︂
w

w ⊗ w = exp
■

(︄∑︂
h∈H

ζh ⊗ Ph

)︄
, (4.16)

respectively

log
■

∑︂
w

w ⊗ w =
∑︂
h∈H

ζh ⊗ Ph.

We have arrived at a definition of coordinates of the first kind which does not rely on testing
against grouplike elements.
Remark 4.3.1. Considering S as an element of T ⟨⟨Rd⟩⟩, it is grouplike. Indeed, for a, b ∈ T (Rd),

⟨a⊠ b,∆�S⟩ = ⟨a⊠ b,∆�
∑︂

w

ww⟩ =
∑︂

w

w ⟨a⊠ b,∆�w⟩ =
∑︂

w

w⟨a� b, w⟩

= a� b = ⟨a⊠ b,
∑︂
w,v

w� v w ⊠ v⟩ = ⟨a⊠ b,
∑︂

w

ww ⊠
∑︂

v

v v⟩

= ⟨a⊠ b, S ⊠ S⟩.

Here for a word w ∈ T (Rd) we write w as its realization in T ⟨⟨Rd⟩⟩. Then

Λ := log
■
S,

is primitive. The search for coordinates of the first kind then amounts to finding a “simple”
expression for this primitive element.
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One can construct the coordinates ζh as follows. Pick any Sh ∈ T (Rd), h ∈ H, such that

⟨Sh, Ph′⟩ = δh,h′ .

One can actually pick the Sh in such a way that they extend to the dual of the corresponding
PBW basis of T ((Rd))5 but this is not necessary here. Then

⟨︂
Sh, log

(︄
exp

(︄∑︂
h′∈H

ch′Ph′

)︄)︄⟩︂
=
⟨︂
Sh,

∑︂
h′∈H

ch′Ph′

⟩︂
= ch.

We want “to put the logarithm on the other side”. This is indeed possible, since the logarithm
on grouplike elements extends to a linear map π1 on all of T ((Rd)) (see [Reu93, Section 3.2],
and also [MNT13, Section 1 and 10] for a general overview on Lie idempotents), given as [Reu93,
Equation (3.2.3)]

π1(u) :=
∑︂
n≥1

(−1)n+1

n

∑︂
v1,...,vn non-empty

⟨v1 � · · ·� vn, u⟩ v1 • · · · • vn. (4.17)

Denote its dual map by π⊤
1 .6 It is given as [Reu93, proof of Theorem 6.3]

π⊤
1 (v) =

∑︂
n≥1

(−1)n+1

n

∑︂
u1,...,un non-empty

⟨v, u1 • · · · • un⟩ u1 � · · ·� un.

Then for all h ∈ H

⟨︂
π⊤

1 Sh, exp
(︄∑︂

h′∈H

ch′Ph′

)︄⟩︂
= ch,

that is, the coordinates of the first kind are given by [GK08, Theorem 1]

ζh = π⊤
1 Sh h ∈ H. (4.18)

We note that ζh must of course be independent of the choice of the Sh and this is indeed the
case, since kerπ⊤

1 = (im π1)⊥ = gn(Rd)⊥.

Example 4.3.2. Let (Ph)h∈H be the Lyndon basis (which is a Hall basis, [Reu93, Theorem 5.1]).
In the case d = 2, we give in Table 4.1 the first few elements for Ph, Sh and π⊤

1 Sh, where we
take (Sh)h∈H as in [Reu93, Theorem 5.3].

The expressions given by (4.18) can become quite unwieldy. Finding tractable expressions for
coordinates of the first kind was a main motivation for Rocha in [Roc03b] and [Roc03a]. We will
now reproduce some of his results using purely algebraic arguments.

5If Ph is a Hall basis, [Reu93, Theorem 5.3] gives recursive formulae for the dual of the corresponding PBW
basis

6[Reu93, Section 6.2] uses the notation π∗
1.
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Lyndon
word h Ph Sh ζh = π⊤

1 Sh

1 1 1 1
2 2 2 2
12 [1, 2] 12 + 1

2 12− 1
2 21

112 [1, [1, 2]] 112 + 1
6 112− 1

3 121 + 1
6 211

122 [[1, 2], 2] 122 + 1
6 122− 1

3 212 + 1
6 221

1112 [1, [1, [1, 2]]] 1112 − 1
6 1121 + 1

6 1211
1122 [1, [[1, 2], 2]] 1122 + 1

6 1122− 1
6 1212 + 1

6 2121− 1
6 2211

1222 [[[1, 2], 2], 2] 1222 − 1
6 2122 + 1

6 2212
11112 [1, [1, [1, [1, 2]]]] 11112 1

30 [−11112 − 11121 + 411211 − 12111 − 21111]
11122 [1, [1, [[1, 2], 2]]] 11122 1

30 [211122 − 311212 − 311221 + 212112 + 212121
−312211 + 221112 + 221121 − 321211 + 222111]

11222 [1, [[[1, 2], 2], 2]] 11222 1
30 [211222 − 312122 + 212212 + 212221 − 321122

+221212 + 221221 − 322112 − 322121 + 222211]
12122 [[1, 2], [[1, 2], 2]] 12122 + 3 11222 1

30 [311222 − 212122 − 212212 + 312221 − 221122
+321212 − 221221 − 222112 − 222121 + 322211]

11212 [[1, [1, 2]], [1, 2]] 11212 + 2 11122 1
30 [11122 + 11212 + 11221 − 412112 + 12121

+12211 + 21112 − 421121 + 21211 + 22111]
12222 [[[[1, 2], 2], 2], 2] 12222 1

30 [−12222 − 21222 + 422122 − 22212 − 22221]

Table 4.1: Example values for the Lyndon basis on two elements. The first column shows the
Lyndon words, which are the Hall words for this basis. For each Lyndon word h, we show
element Ph of the Hall basis which is also the PBW basis element labelled by h. Next we show
the corresponding element Sh of the dual PBW basis, which also serves as Sh described above.
Finally we show the corresponding coordinate of the second kind.

Lyndon
word h Ph Sh ζh = π⊤

1 Sh

1 1 1 1
12 [1, 2] 12 1

2 12− 1
2 21

112 [1, [1, 2]] 112 1
6 [112− 2121 + 211]

122 [[1, 2], 2] 122 1
6 [122− 2212 + 221]

123 [1, [2, 3]] 123 1
6 [2123− 132− 213− 231− 312 + 2321]

132 [[1, 3], 2] 123 + 132 1
6 [123 + 132− 2213 + 231− 2312 + 321]

1123 [1, [1, [2, 3]]] 1123 1
6 [1123 − 1213 − 1231

+1321 + 3121 − 3211]
1132 [1, [[1, 3], 2]] 1123 + 1132 1

6 [1123 + 1132 − 1213 − 1312
+2131 − 2311 + 3121 − 3211]

1213 [[1, 2], [1, 3]] 1123 + 1132 + 1213 1
6 [1213 − 1312 − 2113 + 2131 + 3112 − 3121]

Table 4.2: Example values for the Lyndon basis on three elements. The first column shows
the Lyndon words, which are the Hall words for this basis. For each Lyndon word h, we show
element Ph of the Hall basis which is also the PBW basis element labelled by h. Next we show
the corresponding element Sh of the dual PBW basis, which also serves as Sh described above.
Finally we show the corresponding coordinate of the second kind.
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Hall
word h Ph Sh ζh = π⊤

1 Sh

1 1 1 1
2 2 2 2
12 [1, 2] 12 1

2 12− 1
2 21

121 [[1, 2], 1] 112 + 121 1
6 [2121− 112− 211]

122 [[1, 2], 2] 122 1
6 [122 + 221− 2212]

1211 [[[1, 2], 1], 1] 1112 + 1121 + 1211 1
6 [1211− 1121]

1221 [[[1, 2], 2], 1] 1122 + 1212 + 1221 1
6 [1212− 1122− 2121 + 2211]

1222 [[[1, 2], 2], 2] 1222 1
6 [2212− 2122]

12111 [[[[1, 2], 1], 1], 1] 11112 + 11121
+11211 + 12111

1
30 [11112 + 11121 − 411211 + 12111 + 21111]

12211 [[[[1, 2], 2], 1], 1] 11122 + 11212 + 11221
+12112 + 12121 + 12211

1
30 [211122 − 311212 − 311221 + 2121112 + 212121

−312211 + 221112 + 221121 − 321211 + 222111]

12221 [[[[1, 2], 2], 2], 1] 11222 + 12122
+12212 + 12221

1
30 [−211222 + 311112 − 212212 − 212221 + 321122

−221212 − 221221 + 322112 + 322121 − 222211]

12222 [[[[1, 2], 2], 2], 2] 12222 1
30 [−12222 − 21222 + 422122 − 22212 − 22221]

12112 [[[1, 2], 1], [1, 2]] 411122 + 311212 + 211221
+212112 + 12121

1
30 [−11122 − 11212 − 11221 + 412112 − 12121

−12211 − 21112 + 421121 − 21211 − 22111]

12112 [[[1, 2], 2], [1, 2]] 311222 + 212122 + 12212 1
30 [−311222 + 212122 + 212212 − 312221 + 221122

−321212 + 221221 + 222112 + 222121 − 322211]

Table 4.3: Example values for the standard Hall basis on two elements. The first column shows
the Hall words. For each Hall word h, we show element Ph of the Hall basis which is also the
PBW basis element labelled by h. Next we show the corresponding element Sh of the dual PBW
basis, which also serves as Sh described above. Finally we show the corresponding coordinate of
the second kind.
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4.3.1 Coordinates of the first kind in terms of areas-of-areas

As in Remark 4.3.1 we consider the grouplike element S ∈ T ⟨⟨Rd⟩⟩. The goal is to find a “simple
expression” for

Λ := log
■
S.

Following Rocha, we obtain

R = r(S) = (r ◦ exp
■
)[Λ].

The last step consists now in inverting r ◦ exp
■

here. We shall need the following version of
Baker’s identity [Reu93, Equation (1.6.5)].

Lemma 4.3.3. Let x, q ∈ T ((Rd)) (resp. L,Q ∈ T ⟨⟨Rd⟩⟩) with q (resp. Q) having no coefficient
in the empty word e (resp. e) and x (resp. L) primitive. Then

r(x • q) = [x, r(q)], r(L ■Q) = [L, r(Q)]■.

Proof. For x, L Lie, by [Reu93, Theorem 1.4 (ii)], adx = Adx on T ((Rd)) and adL = AdL on
T ⟨⟨Rd⟩⟩. Hence for q ∈ T ((Rd)) and Q ∈ T ⟨⟨Rd⟩⟩ any polynomial having no coefficient in the
empty word,

r[x • q] = adx r[q] = Adx r[q] = [x, r[q]],
r[L ■Q] = adL r[Q] = AdL r[Q] = [L, r[Q]]■.

We denote by [., .]■ the Lie bracket on W coming from the product ■. Note that

[p⊗ p′, q ⊗ q′]■ = (p� q)⊗ [p′, q′].

Remark 4.3.4. This is the Lie structure for the pre-Lie structure ⊵ (Theorem 4.2.5), i.e.

[x, y]■ = x ■ y − y ■ x = x⊵ y − y ⊵ x = x ⪰ y − y ⪰ x− y ⪯ x+ x ⪯ y.

For x ∈W denote by ad■;x the corresponding adjunction operator, i.e. ad■;x y := [x, y]
■
.

Let Λ ∈ T ⟨⟨Rd⟩⟩ be primitive. Then, using Lemma 4.3.3,

r (Λ■n) = [Λ, r
(︁
Λn−1)︁]■.

Iterating this, we get

r(Λ■n) = (ad■;Λ)n−1DΛ.

Hence

R = r[exp
■
(Λ)] = r

⎡⎣∑︂
n≥0

Λ■n

n!

⎤⎦ =
∑︂
n≥1

(ad■;Λ)n−1

n! DΛ. (4.19)

This can now be used to recursively construct Λ from R. Put

[x1, . . . , xn]
■

:= [x1, [. . . , [xn−1, xn] . . .]■, [x1, x2]
■

:= [x1, x2]■, [x]
■

:= x.
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Proposition 4.3.5. We have Λ1 = R1 and

Λn = 1
n
Rn −

1
n

n∑︂
i=2

1
i!

∑︂
n1,...,ni

n1+···+ni=n

ni [Λn1 , . . . ,Λni
]
■
.

Proof. Rewriting Equation (4.19) for the homogeneous part Rn yields

Rn = DΛn + 1
2

n−1∑︂
m=1

[Λm, DΛn−m]■ +
n∑︂

i=3

1
i!

∑︂
n1,...,n1

n1+···+n1=n

[Λn1 , . . . ,Λni−1 , DΛni ]■

= nΛn +
n−1∑︂
m=1

(n−m)[Λm,Λn−m]■ +
n∑︂

i=3

1
i!

∑︂
n1,...,n1

n1+···+n1=n

ni[Λn1 , . . . ,Λni−1 ,Λni
]
■

= nΛn +
n∑︂

i=2

1
i!

∑︂
n1,...,n1

n1+···+n1=n

ni[Λn1 , . . . ,Λni ]■,

which shows the claim.

Example 4.3.6. Let us spell out the first few summands of (4.19),

R = DΛ + 1
2! [Λ, DΛ]

■
+ 1

3! [Λ, [Λ, DΛ]
■
]
■

+ 1
4!
[︁
Λ, [Λ, [Λ, DΛ]

■
]
■

]︁
■

+ . . .

Level by level (remember that Λ0 = 0), we see

R1 = Λ1

R2 = 2Λ2 + 1
2! [Λ1,Λ1]■

R3 = 3Λ3 + 1
2!
(︁
[Λ1, 2Λ2]■ + [Λ2,Λ1]■

)︁
+ 1

3! [Λ1, [Λ1,Λ1]■]■
R4 = 4Λ4 + 1

2!
(︁
[Λ1, 3Λ3]■ + [Λ2, 2Λ2]■ + [Λ3,Λ1]■

)︁
+ 1

3!
(︁
[Λ1, [Λ1, 2Λ2]■]■ + [Λ1, [Λ2,Λ1]■]■ + [Λ2, [Λ1,Λ1]■]■

)︁
+ 1

4! [Λ1, [Λ1, [Λ1,Λ1]■]■]■
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Plugging in the expressions from Example 4.2.10 in for R, we get for d = 2

Λ1 = R1 = 1⊗ 1 + 2⊗ 2

Λ2 = 1
2R2 = 1

4
(︁
area(1, 2)⊗ [1, 2] + area(2, 1)⊗ [2, 1]

)︁
= 1

2 area(1, 2)⊗ [1, 2]
Λ3 = 1

3
(︁
R3 − 1

2 [Λ1, 2Λ2]■ − 1
2 [Λ2,Λ1]■ − 1

3 [Λ1, [Λ1,Λ1]■]■
)︁

= 1
3
(︁
R3 − 1

2 [Λ1,Λ2]■
)︁

= 1
6 area(1, area(1, 2))⊗ [1, [1, 2]] + 1

6 area(2, area(1, 2))⊗ [2, [1, 2]]
− 1

12 (1� area(1, 2))⊗ [1, [1, 2]]− 1
12 (2� area(1, 2))⊗ [2, [1, 2]]

Λ4 = 1
4
{︁
R4 − 1

2!
(︁
[Λ1, 3Λ3]■ + [Λ2, 2Λ2]■ + [Λ3,Λ1]■

)︁
− 1

3!
(︁
[Λ1, [Λ1, 2Λ2]■]■ + [Λ1, [Λ2,Λ1]■]■ + [Λ2, [Λ1,Λ1]■]■

)︁
− 1

4! [Λ1, [Λ1, [Λ1,Λ1]■]■]■
}︁

= 1
4
(︁
R4 − [Λ1,Λ3]■ − 1

3! [Λ1, [Λ1,Λ2]■]■
)︁

= 1
24

(︂
area(1, area(1, area(1, 2)))⊗ [1, [1, [1, 2]]] + area(1, area(2, area(1, 2)))⊗ [1, [2, [1, 2]]]

+area(2, area(1, area(1, 2)))⊗ [2, [1, [1, 2]]] + area(2, area(2, area(1, 2)))⊗ [2, [2, [1, 2]]]

−(1� area(1, area(1, 2)))⊗ [1, [1, [1, 2]]]− (2� area(1, area(1, 2)))⊗ [2, [1, [1, 2]]]

−(1� area(2, area(1, 2)))⊗ [1, [2, [1, 2]]]− (2� area(2, area(1, 2)))⊗ [2, [2, [1, 2]]]
)︂

Remark 4.3.7. Comparing with [Roc03b, Section 3, page 322] we note that we correct some of
the coefficients appearing in Λ3 and Λ4 there.

Definition 4.3.8. Let ˜︃BPTn be binary planar trees, with two types of inner nodes, and , and
such that the subset of all nodes is either empty or forms a subtree with the same root as the
tree itself. In other words the square nodes are all connected to the root.

Define e : ˜︃BPTn → R as follows. If the root of τ is , then

e(τ) := 1
nc(τ) ,

where c was defined in Lemma 4.2.12. Otherwise, we can write τ uniquely as

τ =
τ (1)
τ (2) ·
·

τ (ℓ−1)τ (ℓ)

= (τ (1) →■ (τ (2) →■ (· · · →■ (τ (ℓ−1) →■ τ
(ℓ))))),

for some ℓ = ℓ(τ) ≥ 2, τ (1), . . . , τ (ℓ−1) ∈ ˜︃BPT and τ (ℓ) ∈ BPT. Here σ →■ ρ is the grafting, to a
new root of type ■, with σ on the left and ρ on the right. Then

e(τ) := −
ℓ(τ)∑︂
j=2

|τ (≥j)|leavese(τ (≥j))
j!|τ |leaves

(︄
j−1∏︂
i=1

e(τ (i))
)︄
,

where

τ (≥j) :=
τ (j)
τ (j+1) ·

·

τ (ℓ−1)τ (ℓ)

= (τ (j) →■ (τ (j+1) →■ (· · · →■ (τ (ℓ−1) →■ τ
(ℓ))))), j = 1, . . . , ℓ− 1

τ (≥ℓ) := τ (ℓ).



4.3. COORDINATES OF THE FIRST KIND 113

Finally, for a tree τ ∈ ˜︃BPTn and a word w of length n, define ˜︃area (τ) as bracketing out using
area if a node of type • is encountered and multiplying using � when a node ■ is encountered.

Example 4.3.9. The trees in ˜︃BPT2 are

i j, i j

for letters i and j, and the trees in ˜︃BPT3 are

i
j k

,
i j

k, i
j k

,
i j

k, i
j k

,
i j

k,

for letters i, j and k.
We have

e(2) = c(2) = 1

e(2 3) = − 1
2 · 2e(2)|3|leavese(3) = −1

4

e(1
2 3

) = −1
3

(︃
1
2!e(1)|2 3|leavese(2 3) + 1

3!e(2)e(2)|3|leavese(3)
)︃

= −1
3

(︃
−1

4 + 1
6

)︃
= 1

36 .

And

˜︃area (1
2 3

) = 1� area(2, 3).

Theorem 4.3.10. Then

Λn =
∑︂

τ∈˜︃BPTn

e(τ) ˜︃area (τ)⊗ lie (τ) ∈ L := ⟨R; [·, ·]■⟩ .

Proof. Define

τ ∈ ˜︃BPTn;≥i := {τ ∈ ˜︃BPTn | ℓ(τ) ≥ i},
[x1, . . . , xn] := [x1, [. . . , [xn−1, xn] . . .], [x1, x2] := [x1, x2], [x] := x.

Due to e(i) = c(i) = 1 for all letters i, we have

Λ1 = R1 =
d∑︂

i=1

i⊗ i =
∑︂

τ∈BPT1

e(τ)˜︁area (i)⊗ lie (i),
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and then via induction over n

Λn = 1
n
Rn −

1
n

n∑︂
i=2

1
i!

∑︂
n1,...,ni

n1+···+ni=n

ni [Λn1 , . . . ,Λni ]■

=
∑︂

τ∈BPTn

1
nc(τ)area (τ)⊗ lie (τ)

− 1
n

n∑︂
i=2

1
i!

∑︂
n1,...,ni

n1+···+ni=n

∑︂
τ1,...τ i

τj∈˜︃BPTnj

|τ i|leaves

i∏︂
j=1

e(τ j)˜︁area (τ1)� · · ·�˜︁area (τ i)⊗ [lie (τ1), . . . , lie (τ i)]

=
∑︂

τ∈BPTn

e(τ) area (τ)⊗ lie (τ)

− 1
n

n∑︂
i=2

1
i!

∑︂
τ∈˜︃BPTn;≥i

|τ (≥i)|leavese(τ (≥i))
i−1∏︂
j=1

e(τ (j)) ˜︁area (τ)⊗ lie (τ)

=
∑︂

τ∈BPTn

e(τ) area (τ)⊗ lie (τ)−
∑︂

τ∈˜︃BPT
≥2
n

ℓ(τ)∑︂
i=2

|τ (≥i)|leavese(τ (≥i))
i!|τ |leaves

i−1∏︂
j=1

e(τ (k)) ˜︁area (τ)⊗ lie (τ)

=
∑︂

τ∈˜︃BPTn

e(τ) ˜︁area (τ)⊗ lie (τ).

Remark 4.3.11. Recall, from Theorem 4.2.8,

R = ⟨i⊗ i, i = 1 . . . d;⊵Sym⟩ .

Define

P := ⟨i⊗ i, i = 1 . . . d;⊵⟩
D := ⟨i⊗ i, i = 1 . . . d;⪰,⪯⟩ .

Then, we have Sn, Rn,Λn ∈ D, and the chain of inclusions

R ⊊ L ⊆ P ⊊ D.

Indeed, the mere inclusions are clear since ⊵Sym and [·, ·]■ are symmetrization and antisym-
metrization of ⊵, and ⊵ itself is defined as a combination of ⪰ and ⪯. Regarding the strictness
of two of the inclusions, on the one hand for any d ≥ 2, the only anagram axis of 12⊗12 contained
in R is spanned by

(1⊗ 1)⊵Sym (2⊗ 2) = (2⊗ 2)⊵Sym (1⊗ 1) = area(1, 2)⊗ [1, 2] = (12− 21)⊗ (12− 21),

and thus the L element

[1⊗ 1, 2⊗ 2]■ = (1� 2)⊗ [1, 2] = (12 + 21)⊗ (12− 21)

is not contained in R. On the other hand, the anagram space of 12⊗ 12 in P is spanned by the
two vectors

(1⊗ 1)⊵ (2⊗ 2) = (1≻ 2)⊗ [1, 2] = 12⊗ (12− 21),
(2⊗ 2)⊵ (1⊗ 1) = (2≻ 1)⊗ [2, 1] = −21⊗ (12− 21),
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and is thus easily seen to not contain the D element

(1⊗ 1) ⪰ (2⊗ 2) = (1≻ 2)⊗ (1 • 2) = 12⊗ 12.

However, it remains an open problem whether L and P coincide.
Finally, we note the inclusion D ⊆ A, where (A,⪰,⪯) is the dendriform algebra with linear basis
given by all w⊗v such that w is a word and v is an anagram of w, and leave as a further question
for future work whether D and A actually coincide.

Since the expansion in this theorem is not in terms of a basis of the Lie algebra, these are not
yet coordinates of the first kind. But, by a straightforward projection procedure we get

Corollary 4.3.12 (based on [Roc03b, Theorem 1 and Corollary 1]).

S = exp
■

(Λ) ,

with

Λ =
∑︂

h

ζh ⊗ Ph,

where h runs over Hall words, Ph are the corresponding Lie Hall basis elements, and the ζh are
expressed as linear combinations of shuffles of areas-of-areas,

ζh =
∑︂

τ∈˜︃BPT|h|,

foliage of τ∈Anagrams(h)

e(τ)
⟨︂
P ∗

h , lie (τ)
⟩︂ ˜︃area (τ).

Remark 4.3.13. Again, this result is not satisfying because the ζh are expensive to calculate due
to the large number of summands, which are not even linearly independent. We mention it only
for completeness.

Proof of Corollary 4.3.12. Let Ph be Lie basis and P ∗
h its dual basis. Then

Λ =
∑︂

h

∑︂
τ∈˜︃BPTn

e(τ) ˜︁area (τ)⟨P ∗
h , lie (τ)⟩ ⊗ Ph

=:
∑︂

h

ζh ⊗ Ph,

where P ∗
h can be expressed as an element of T (Rd) which is a linear combination of anagrams of

h, thus ⟨P ∗
h , lie (τ)⟩ = 0 if the foliage of τ is not an anagram of h.

4.4 Shuffle generators

For a countable index set I consider the free commutative algebra R[xi : i ∈ I] over the inde-
terminates xi, i ∈ I ([Row88, Definition 1.2.12]). If V is a vector space with a countable basis,
we also write R[V ] for R[xi : i ∈ I] where I is some basis of V . A commutative algebra A is
generated by some elements zi ∈ A, i ∈ I, if the commutative algebra morphism

R[xi : i ∈ I]→ A,



116 CHAPTER 4. AREAS OF AREAS GENERATE THE SHUFFLE ALGEBRA

extended from xi ↦→ zi, is surjective. If it is also injective, the algebra is freely generated
by the elements zi. The goal of this section is to find a simple condition on a countable family
zi ∈ T (Rd), i ∈ I, to be (freely) generating.
Before stating the general results, let us begin with the example of the image of ρ.

Proposition 4.4.1. Any basis for the image of Im ρ is generating. More explicitly, for any
non-empty word w, we have

w =
∑︂

w1,...,wn
w1···wn=w

1
k|w1|,...,|wn|

ρ(w1)� · · ·� ρ(wn), (4.20)

where km1,...,mn = (m1 + · · ·+mn)km2,...,mn , with km = m.

Proof. For any letter i, we have i = ρ(i) in accordance with Equation (4.20). Assume the
equation holds for all non-empty words v with |v| ≤ ℓ for some ℓ ≥ 1, and let w be a word with
|w| = ℓ+ 1. Then, by Equation (4.6) we have

|w|w = Dw =
∑︂

uv=w

ρ(u)� v =
∑︂

uv=w

ρ(u)�
∑︂

v1,...,vn
v1···vn=v

1
k|v1|,...,|vn|

ρ(v1)� . . .� ρ(vn)

=
∑︂

w1,...,wn
w1···wn=w

1
k|w2|,...,|wn|

ρ(w1)� . . .� ρ(wn),

again in accordance with Equation (4.20).
Note that in order for the induction to work, we made use again of the fact that ρ(e) = 0, so we
only sum over non-empty words.

Lemma 4.4.2. For each n ≥ 1, let Xn ⊂ Tn(Rd) be a subset of the shuffle algebra at level n.
Let X :=

⋃︁
n≥1 Xn. Then:

For all n ≥ 1, for all nonzero L ∈ gn(Rd) there is an x ∈ Xn such that ⟨x, L⟩ ̸= 0
if and only if

X generates the shuffle algebra T (Rd).

If moreover |Xn| = dim gn(Rd), n ≥ 1, then X is freely generating.

Remark 4.4.3. This lemma can also be seen as a consequence of (the proof of) the Cartier-
Milnor-Moore theorem, see for example [Car07, Section 3.8]. Let us sketch this. Let T (Rd)∗ gr be
the graded dual of T (Rd), the subspace of T ((Rd)) consisting of only finite linear combinations
of words. Endowed with the unshuffle coproduct, the dual of the shuffle product, this is a
cocommutative, conilpotent coalgebra. Then, by the proof of [Car07, Theorem 3.8.1], there
exists an isomorphism of cocommutative coalgebras

eT (Rd)∗ gr : Γ[g]→ T (Rd)∗ gr.

Here Γ[g] ⊂ T (g) are the symmetric tensors over g, generated, as a vector space, by the elements
v ⊗ · · · ⊗ v⏞ ⏟⏟ ⏞

n times

, v ∈ g, n ≥ 0, and endowed with the deconcatenation coproduct. The map eT (Rd)∗ gr
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acts on these elements as

eT (Rd)∗ gr

⎛⎝v ⊗ · · · ⊗ v⏞ ⏟⏟ ⏞
n times

⎞⎠ = vn

n! ,

where the n-th power on the right-hand side is taken with respect to the concatenation product
(under which T (Rd)∗ gr is closed). The grading on T (Rd)∗ gr induces a grading on Γ[g] via the
isomorphism eT (Rd)∗ gr .
Let us now follow the end of the proof of [Car07, Theorem 3.8.3]. The graded dual (with respect
to this induced grading) of Γ[g] is given by R[g∗ gr], i.e. the symmetric algebra over g∗ gr, where
g∗ gr is the graded dual of g. Since eT (Rd)∗ gr is an isomorphism of cocommutative coalgebras, the
dual map

e∗ gr
T (Rd)∗ gr : T (Rd)→ R[g∗ gr],

is an isomorphism of commutative algebras.
X (freely) generating T (Rd) is then equivalent to e∗ gr

T (Rd)∗ gr (X) (freely) generating R[g∗ gr], which
is equivalent to our condition, using Lemma 4.8.1.

Proof. We show for every level N :

∀n ≤ N ∀ 0 ̸= L ∈ gn(Rd) there is x ∈ Xn with ⟨x, L⟩ ̸= 0
if and only if⋃︁

1≤n≤NXn shuffle generates T≤N (Rd).

It is clearly true for N = 1. Let it be true for some N . We show it for N + 1.
Let shuffN+1 ⊂ TN+1(Rd) denote the linear space of shuffles of everything “from below”, i.e.

shuffN+1 :=
N⋃︂

n=1

{︁
Tn(Rd)� TN−n(Rd)

}︁
.

By [Reu93, Theorem 3.1 (iv)] ⟨︂
shuffN+1, L

⟩︂
= 0,

for all L ∈ gN+1(Rd). In other words, shuffN+1 is contained in the annihilator of gN+1(Rd). By
[Reu93, Theorem 6.1], the shuffle algebra is freely generated by the Lyndon words in 1, . . . , d,
which have dimension dim gn(Rd) on level n. Hence

dim shuffN+1 = dim TN+1(Rd)− dim gN+1(Rd).

By dimension counting, we hence have that shuffN+1 must actually be equal to the annihilator
of gN+1(Rd). Then, a fortiori, gN+1(Rd) is the annihilator of shuffN+1.
By Lemma 4.4.4,

TN+1(Rd) = shuffN+1 + spanRXN+1

if and only if
∀ 0 ̸= L ∈ gN+1(Rd) there is x ∈ spanRXN+1 with ⟨x, L⟩ ̸= 0.
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But this is the case if and only if ∀ 0 ̸= L ∈ gN+1(Rd) there is x ∈ XN+1 with ⟨x, L⟩ ̸= 0. This
finishes the proof regarding the generating property.
Regarding freeness: denote ι : R[xv : v ∈ X] → T (Rd) the extension, as a commutative algebra
morphism, of the map xv ↦→ v. Denote ιLyndon : R[yw : w ∈ L] → T (Rd) the extension, as a
commutative algebra morphism, of the map yw ↦→ w, where L are the Lyndon words. By [Reu93,
Theorem 6.1], ιLyndon is an isomorphism. By what we have shown so far, ι is surjective. Since
X consists of homogeneous elements, we can grade R[xv : v ∈ X] induced from the grading of
T (Rd) and analogously for R[yw : w ∈ L]. By assumption, the graded dimensions match. Hence,
there is an isomorphism of graded, commutative algebras

Φ : R[xv : v ∈ X]→ R[yw : w ∈ L].

Since ιLyndon is an isomorphism of graded, commutative algebras and ι is an epimorphism of
graded, commutative algebras (where each homogeneous subspace is finite dimensional!) we
must have that ι is in fact an isomorphism.

We used the following simple lemma.

Lemma 4.4.4. Let V be a finite dimensional vector space with dual W := V ∗. We denote the
pairing by ⟨w, v⟩, for w ∈W, v ∈ V . Let W1,W2 be subspaces of W and let

W⊥
1 := {v ∈ V : ⟨w1, v⟩ = 0 ∀w1 ∈W1},

be the annihilator of W1. Then:

∀ 0 ̸= v1 ∈W⊥
1 there is w2 ∈W2 with ⟨w2, v1⟩ ̸= 0

if and only if
W1 +W2 = W .

Proof. Recall the well-known identity (e.g. [Hal17, Exercise 8.(c) of Section 17])

(W1 +W2)⊥ = W⊥
1 ∩W⊥

2 .

Then

W1 +W2 = W ⇔W⊥
1 ∩W⊥

2 = {0},

which is the claim.

Corollary 4.4.5. Let X be a set of homogeneous elements of T (Rd). Then, the following are
equivalent:

(i) X freely shuffle generates T (Rd),

(ii) X is a homogeneous realization of a dual basis to a homogeneous basis of g(Rd),

(iii) X is a homogeneous basis for the image of a projection π⊤, where π is a graded projection
π : T (Rd)→ g(Rd) ⊂ T (Rd) 7.

Examples include:
7Identifying g(Rd) as a subset of T (Rd).
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1. π := π1, the Eulerian idempotent (4.17)
⇝ Coordinates of the first kind.

2. A rescaling of the Dynkin map r (4.3) (to make it a projection)

⇝ A basis for the image of ρ, for example rh from Theorem 4.2.14, which by Corollary
4.2.8 can be expressed as areas-of-areas.

3. π the orthogonal projection (with respect to the inner product in the ambient space T (Rd))
onto g(Rd) (the Garsia idempotent, see [Duc91] where formulas for the idempotent of
multilinear elements are given in Proposition 5.1 and Theorem 6.3, and [PRS05])

⇝ Any (homogeneous) basis for the Lie algebra g(Rd) ⊂ T (Rd), identified as elements of
T (Rd).

Remark 4.4.6. 1. Point 3. is shown in [Reu93, Section 6.5.1], We include it here, as it falls nicely
into the setting of Lemma 4.4.2.
2. Coordinates of the first kind must - by definition - contain all the information of the signature,
so it is reasonable that they shuffle generate T (Rd). For the other sets this is not immediately
evident. The basis for the Lie algebra is one such example and it does not even live in the correct
space (formally, it is an element of the concatenation algebra T ((Rd)) not of the shuffle algebra
T (Rd)).
3. All of the above examples of Lie idempotents can be expressed in terms of an action of a sym-
metric group algebra element (for the Garsia idempotent, this fact is [Duc91, Theorem 4.1 (v)]),
and are thus part of the algebra introduced in [PR02a].

Proof. (iii)⇒(i): Assume first that we have given a graded projection π with image g(Rd), and
a homogeneous basis (xi)i of Im π⊤. Because of the grading it makes sense to speak of the
component πn : Tn((Rd))→ Tn((Rd)). Then π⊤

n : Tn(Rd)→ Tn(Rd) and

im
(︁
π⊤

n

)︁⊥ = ker (πn) .

Since πn itself is also a projection, we have that

Tn(Rd) = ker(πn)⊕ im(πn).

Hence, for every L ∈ im(π) there is x ∈ im
(︁
π⊤)︁ with ⟨x, L⟩ ̸= 0. Then Lemma 4.4.2 applies.

(i)⇒(ii): Let now X be a homogeneous free shuffle generating set. Then {⟨x, ·⟩|x ∈ Xn} spans
the whole dual space of gn(Rd). Indeed, assume this is not the case, then a comparison with
some Rn shows that there is a nonempty annihilator of Xn inside gn(Rd), but this contradicts
the criterion from Lemma 4.4.2. Hence, X does span the dual space of g(Rd), thus contains
a dual basis to some basis of g(Rd), and since X is freely generating, X is actually that dual
basis (otherwise, a subset of X would already generate, which contradicts the assumption that
X freely generates).
(ii)⇒(iii): Let Ph ∈ T (Rd), h ∈ H, be some homogeneous basis for the Lie algebra. Let Dh ∈
T (Rd), h ∈ H be a realization of a dual basis. That is⟨︂

Dh, Ph′

⟩︂
= δh,h′ .

Then choose π such that kerπ = (spanR{Dh : h ∈ H})⊤.
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Proposition 4.4.7. If X is a homogeneous set and π : T (Rd) → g(Rd) ⊂ T (Rd) is a graded
projection, then π⊤X is a shuffle generating set if and only if π⊤X spans Im π⊤ if and only if
X is a shuffle generating set. If X is freely generating, then so is π⊤X.

Proof. Since for any x ∈ X and p ∈ g(Rd) we have

⟨π⊤x, p⟩ = ⟨x, πp⟩ = ⟨x, p⟩,

the condition for being a shuffle generating set in Lemma 4.4.2 is fulfilled for X if and only if it
is fulfilled for π⊤X. Since any basis of Im π⊤ is a free and thus also a minimal shuffle generating
set by Corollary 4.4.5, π⊤X ⊆ Im π⊤ shuffle generates if and only if it linearly spans Im π⊤. If X
freely shuffle generates, then the shuffle generating set π⊤X must also have minimal dimension
for each homogeneity, and thus freely generate due to the freeness of the shuffle algebra.

Point 3.2 in Corollary 4.4.5 proves, using Corollary 4.2.8, what we set out to prove: areas-of-areas
do shuffle generate T (Rd).

Corollary 4.4.8. The set A of the Introduction is a generating set for T (Rd). A free generating
set is given e.g. by any basis for the image of ρ.

Proof. See Corollary 4.4.5, Point 2.

Remark 4.4.9. Corollary 4.4.8 is an a priori stronger statement than the following easy-to-prove
statement, with which it is occasionally confused.

(A) Any word is a linear combination of shuffles of letters and areas of arbitrary words.

An illustration of (A) is as follows.

123 = (1≻ 2)≻ 3 = 1
2{1� 2 + area(1, 2)} ≻ 3

= 1
4
[︁
{1� 2 + area(1, 2)}� 3 + area({1� 2 + area(1, 2)}, 3)

]︁
= 1

4
[︁
1� 2� 3 + area(1, 2)� 3 + area(1� 2, 3) + area(area(1, 2), 3)

]︁
Corollary 4.4.8 implies that this can be done with all the shuffles outside all the areas, namely

(B) Any word is a linear combination of shuffles of letters and iterated areas of letters.

For example

123 = 1
3 area(1, area(2, 3)) + 1

6 area(area(1, 3), 2) + 1
3 1� area(2, 3)

− 1
6 2� area(1, 3) + 1

2 3� area(1, 2) + 1
6 1� 2� 3.

4.5 Applications

The antisymmetrizing feature of the area operation leads to pleasant properties for piecewise
linear paths and semimartingales.
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4.5.1 Piecewise linear paths: computational aspects

For two time series a0, . . . , an, b0, . . . , bn ∈ R define the new time series

DiscreteArea(a, b)ℓ := Corr1(a, b)ℓ − Corr1(b, a)ℓ

:=
ℓ−1∑︂
i=0

ai+1bi −
ℓ−1∑︂
i=0

bi+1ai, ℓ = 0, . . . , n,

set to be 0 for ℓ = 0. It is known ([DR19, Section 3.2]), that for a piecewise linear curve X
through the points 0, x1, . . . , xn ∈ R2, one has⟨︂

area(1, 2), S(X)0,n

⟩︂
= DiscreteArea

(︁
x1, x2)︁

n
. (4.21)

We will show that this iterates nicely.

Lemma 4.5.1. If X,Y are piecewise linear then Area(X,Y ) is piecewise linear.

Proof.

d

dt
Area(X,Y )t =

∫︂ t

0
dXr Ẏt −

∫︂ t

0
dYr Ẋt

d2

dt2
Area(X,Y )t =

∫︂ t

0
dXr Ÿt + ẊtẎt −

∫︂ t

0
dYr Ẍt − ẎtẊt

=
∫︂ t

0
dXr Ÿt −

∫︂ t

0
dYr Ẍt = 0,

since X,Y are piecewise linear. Hence, Area(X,Y ) is indeed piecewise linear.

In particular, for ϕ ∈ A (defined in the Introduction) and X piecewise linear

t ↦→
⟨︂
ϕ, S(X)0,t

⟩︂
,

is piecewise linear. Note that by Lemma 4.6.2, ϕ can be written as linear combination of elements
of the form w(ij − ji). One can also see directly that such elements yield something piecewise
linear:

d2

dt2

⟨︂
w(ij − ji), S(X)0,t

⟩︂
= d2

dt2

{︃∫︂ t

0

∫︂ s

0

⟨︂
w, S(X)0,r

⟩︂
dX(i)

r dX(j)
s −

∫︂ t

0

∫︂ s

0

⟨︂
w, S(X)0,r

⟩︂
dX(j)

r dX(i)
s

}︃
=
∫︂ t

0

⟨︂
w, S(X)0,r

⟩︂
dX(i)

r Ẍ
(j)
t +

⟨︂
w, S(X)0,t

⟩︂
Ẋ

(i)
t Ẋ

(j)
t

−
∫︂ t

0

⟨︂
w, S(X)0,r

⟩︂
dX(j)

r Ẍ
(i)
t −

⟨︂
w, S(X)0,t

⟩︂
Ẋ

(i)
t Ẋ

(j)
t

= 0.

Lemma 4.5.2. For all nonzero z ∈ T (Rd), there is a piecewise linear path X such that
⟨z, S(X)⟩ ̸= 0.
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Proof. Let z ∈ T (Rd)\{0} be arbitrary and let n be its degree (the length of the longest word in
the word expansion of z). Since G≤n := proj≤nG spans T≤n(Rd) (see e.g. [DR19, Lemma 3.4]),
there are g1, . . . , gk ∈ G and r1, . . . , rk ∈ R such that

⟨z, r1g1 + . . .+ rkgk⟩ = ⟨z, z⟩ ̸= 0,

and hence there is gi ∈ G such that ⟨z, gi⟩ ̸= 0. Now, due to Chow’s theorem according to [FV10,
Theorem 7.28], there is a piecewise linear X such that proj≤ngi = proj≤nS(X), which implies
⟨z, S(X)⟩ = ⟨z, gi⟩ ̸= 0.

Theorem 4.5.3. ⟨S(X)0,t, ϕ⟩ is piecewise linear for all piecewise linear paths X if and only if
ϕ ∈ R⊕A .

Proof. We already showed in Lemma 4.5.1 that for piecewise linear X, ⟨S(X)0,t, ϕ⟩ is again
piecewise linear for all ϕ ∈ A . Since the whole tensor space T (Rd) = R ⊕ A ⊕ B, where B
is spanR{wij, w a word, i ≤ j letters}, and since the sum of a function which is not piecewise
linear with a piecewise linear function is again not piecewise linear, it only remains to show that
for any b ∈ B \ {0}, there is a piecewise linear X such that t ↦→ ⟨b, S(X)0,t⟩ is not piecewise
linear.
To this end, let b =

∑︁
i≤j dijij ∈ B \ {0} be arbitrary. If there is a letter l such that dll ̸= 0

(case 1), choose a piecewise linear path X : [0, 2] → Rd such that ⟨dll, S(X)0,1⟩ ̸= 0 and such
that X↾[1,2] is linear with xl = 1 and xi = 0 for i ̸= l, where xi := Ẋi

3/2. Otherwise, since b is
nonzero, there are letters k < l such that dkl ̸= 0 (case 2), and in this case, choose a piecewise
linear path X : [0, 2] → Rd such that ⟨dkl, S(X)0,1⟩ ̸= 0 and such that X↾[1,2] is linear with
xk = 1, xl = 1 and xi = 0 for i /∈ {k, l}, where xi := Ẋi

3/2. In both cases, such a piecewise linear
X exists due to Theorem 4.5.2.
Since X[1,2] is linear, we have for arbitrary z ∈ T (Rd that t ↦→ ⟨z, S(X)0,t⟩ is polynomial on
[1, 2], and thus arbitrarily often continuously differentiable on (1, 2). Thus, since Ẍ = 0 and Ẋ
constant on (1, 2), we have

lim
t↘1

d2

dt2

⟨︂∑︂
i≤j

dijij, S(X)0,t

⟩︂
=
∑︂
i≤j

⟨︂
dij , S(X)0,1

⟩︂
xixj =

{︄
⟨dll, S(X)0,1⟩ ̸= 0, case 1
⟨dkl, S(X)0,1⟩ ̸= 0, case 2

In both cases, we conclude that t ↦→ ⟨b, S(X)0,t⟩ is not piecewise linear on any interval [1, s],
1 < s ≤ 2, which finishes the proof.

The fact that “being linear” is preserved under the Area-operation immediately leads to the
following theorem.

Theorem 4.5.4. Let X in Rd be a piecewise linear curve through the points 0, x1, . . . , xn ∈ Rd.
Then: for every tree τ , ⟨︂

area (τ), S(X)0,n

⟩︂
= DiscreteArea (τ , x)n .

Here, area is defined in Lemma 4.2.12 and DiscreteArea is defined similarly, as iterated brack-
eting using the DiscreteArea-operator.
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Example 4.5.5. For τ =
1 2

3 the statement reads as

⟨︂
area

(︃
1 2

3

)︃
, S(X)0,n

⟩︂
:=
⟨︂

area (area (1, 2) , 3) , S(X)0,n

⟩︂
=

DiscreteArea
(︃

1 2
3, x

)︃
n

:= DiscreteArea
(︂

DiscreteArea
(︂
x(1), x(2)

)︂
, x(3)

)︂
n
,

which one can verify by a direct, but tedious, calculation.

Remark 4.5.6. This is not obvious at all. Indeed, if we just look at the discrete integration
operator (still assuming x0 = 0)⟨︂

12, S(X)0,n

⟩︂
=

n−1∑︂
i=0

1
2
(︁
x1

i + x1
i+1
)︁ (︁
x2

i+1 − x2
i

)︁
=: DiscreteIntegral

(︁
x1, x2)︁

n
,

this does not iterate. Indeed,

⟨︂
123, S(X)0,n

⟩︂
=

n−1∑︂
i=0

⎛⎝i−1∑︂
j=0

1
2
(︁
x1

j + x1
j+1
)︁
x2

j,j+1 +
(︃

1
2x

1
i + 1

3!x
1
i,i+1

)︃
x2

i,i+1

⎞⎠x3
i,i+1

̸= DiscreteIntegral
(︁
DiscreteIntegral

(︁
x1, x2)︁ , x3)︁

n
.

Proof. If Y, Z are piecewise linear between the points 0, y1, . . . and 0, z1, . . . , then Area(Y,Z) is
piecewise linear between the points

0,DiscreteArea(y, z)1, . . . ,DiscreteArea(y, z)n.

We can hence iterate (4.21).

4.5.2 Martingales and Martingaloids

Another pleasant property of the area operation presents itself when working with a continuous
semimartingale M . One has (see e.g. [IW89, Chapter III, Equation (1.10) and Theorem 1.4])∫︂ T

0
M i

0,rdStratM
j
r =

∫︂ T

0
M i

0,rdItōM
j
r + 1

2[M i,M j ]T . (4.22)

where dStrat denotes Fisk-Stratonovich integration, dItō denotes Itō integration and [., .] denotes
the quadratic covariation.

Proposition 4.5.7. Let (Ω,F ,Ft,P) be a filtered probability space. Let M be a continuous,
Ft-martingale such that all iterated Itō integrals are martingales. Then t ↦→ ⟨ϕ, SStrat(M)0,t⟩ is
an Ft-martingale for all ϕ ∈ A .

Proof. Let X,Y be as in the statement. Assume for simplicity X0 = Y0 = 0 almost surely. Then,
using Equation (4.22),

AreaStrat(X,Y )t :=
∫︂ t

0
XrdStratYr −

∫︂ T

0
YrdStratXr =

∫︂ t

0
XrdItōYr −

∫︂ t

0
YrdItōXr,

is again an (Ft)t-martingale. Hence for every ϕ ∈ A , ⟨ϕ, SStrat(M)0,t⟩ is a Ft-martingale.
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Proposition 4.5.8. Let M be the piecewise linear interpolation of a time discrete (local) martin-
gale whose moments all exist. Then t ↦→ ⟨ϕ, S(M)0,t⟩ is again the piecewise linear interpolation
of a time discrete (local) martingale.

Proof. Let (an)n, (bn)n be two time discrete martingales for the filtration Fk whose moments all
exist. Then,

E[DiscreteArea(a, b)k+1|Fk]− DiscreteArea(a, b)k

= E[DiscreteArea(a, b)k+1 − DiscreteArea(a, b)k|Fk] = E[ak+1bk − bk+1ak|Fk]
= bkE[ak+1|Fk]− akE[bk+1|Fk] = bkak − akbk = 0,

thus (DiscreteArea(a, b)n)n is again an (Fn)n martingale whose moments all exist. If (cn)n, (dn)n

are τn local martingales whose moments all exits, then

DiscreteArea(a, b)τk = DiscreteArea(aτk , bτk )τk = DiscreteArea(aτk , bτk )

is a martingale for any k and thus DiscreteArea(a, b) is a τk local martingale whose moments all
exist.

The previous results imply that for M a martingale with all iterated integrals being in L1(Ω),
or for M a linear interpolation of a time discrete martingale, all expectancies of areas of areas
vanish for M . This naturally leads to the very interesting question of what is the class of all
semimartingale paths such that all area expectancies vanish? For the moment, we feel justified
to simply take it as a definition for further investigation.

Definition 4.5.9.

1. We call a probability measure µ on Gd a martingaloid measure if
∫︁

Gd
⟨g, x⟩ dµ(g) exists and

is equal to zero for all x ∈ A .

2. We call a random map X : [0, T ]2 × Ω → Gd a terminal p-variation martingaloid (resp.
terminal γ-Hölder martingaloid) if it is almost surely a continuous finite p-variation (resp.
γ-Hölder) weakly geometric rough path and the law of X0T is a martingaloid measure.

3. We call a random map X : [0, T ]2 × Ω → Gd a p-variation martingaloid (resp. γ-Hölder
martingaloid) if it is almost surely a continuous finite p-variation (resp. γ-Hölder) weakly
geometric rough path and the law of Xst is a martingaloid measure for all 0 ≤ s < t ≤ T .

In particular, for all these paths, we have, by Theorem 4.6.14, that the expected Stratonovich
signature lies in the kernel of r,

r(E[SStrat(M)0,T ]) = E [r (SStrat(M)0,T )] =
∑︂

w

E[⟨w, SStrat(M)0,T ⟩] r(w)

=
∑︂

w

E[⟨ρ(w), SStrat(M)0,T ⟩]w = 0.

In fact this last property obviously holds for any Semimartingale with ⟨ρ(w), SStrat⟩ = 0 for any
w, which is a priori a larger class than just those paths where the expectancy of all areas of areas
vanishes since Im ρ does not linearly span A .
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Proposition 4.5.10. Let µ and ν be measures on Gd where µ has finite expected signature.
Then if two out of the three measures µ, ν, µ ⋇ ν are martingaloid measures, so is the third.
In particular, martingaloid measures of a fixed dimension with finite expected signature form
a monoid under stochastic convolution. Its unit δe is the only Dirac measure on Gd that is
martingaloid.

This result can be directly applied to rough paths: If X and Y are independent random rough
paths where X has finite expected signature, then again if two out of the three X, Y and X⊔Y
are martingaloids, so is the third. This Proposition also means that Lévy processes on Gd with
finite expected signature are martingaloids if and only if they are terminal martingaloids.

Proof. Let g1, g2 be independent Gd-valued random variables with g1 having finite expected
signature. We have for all homogeneous x ∈ A , with Sweedler’s notation

∑︁•
(x) x

′ ⊗ x′′ =
∆• x− x⊗ e− e⊗ x for the reduced coproduct,

E[⟨g1 • g2, x⟩] = E[
•∑︂

(x)

⟨g1, x1⟩⟨g2, x2⟩] = E[⟨g1, x⟩] + E[⟨g2, x⟩] + a

•∑︂
(x)

E[⟨g1, x
′⟩]E[⟨g2, x

′′⟩],

provided that both all expectancies E[⟨g2, x
′′⟩] and E[⟨g1 • g2, x⟩] or E[⟨g2, x⟩] exist. Since all x′′

in the sum can be expressed as sums of homogeneous terms of lower homogeneity than x and
are by Corollary 4.6.4 elements of A , it can be easily seen by induction over the homogeneity of
x that all the area expectancies of g1, g2 and g1 • g2 exist and vanish whenever g1 and g2, or g1
and g1 • g2, or g2 and g1 • g2 have vanishing area expectancies.
If we now assume that g1 and g2 are independent, have finite expected signature and vanishing
area expectancies, then by the previous induction argument g1 • g2 has vanishing area expectan-
cies, and furthermore for all words w

E[⟨g1 • g2, w⟩ = E[
∑︂
(w)

⟨g1, w1⟩⟨g2, w2⟩] =
∑︂
(w)

E[⟨g1, w1⟩]E[⟨g2, w2⟩]

exists, thus g1 • g2 has finite expected signature. Together with δe obviously being a unit, this
shows the monoid property of the set of all martingaloid measures on Gd with finite expected
signature.
Finally, for a Dirac measure δg on Gd the expected signature is just the single grouplike element
g the measure is supported on, and if δg is martingaloid we have ⟨g,A ⟩ = {0} which by the main
theorem of this chapter Corollary 4.4.8 means g = e.

4.6 Linear span of area expressions

In [Dzh07] the antisymmetric, non-associative operation area was studied in detail. It was shown
in [Dzh07, Lemma 6.1 and 6.2] that

• area does not satisfy any new identity of arity 3; in particular it does not satisfy the Jacobi
identity.

• In arity 4 there is exactly one new identity, the Tortkara identity.
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Over a field of characteristic different from two, we have the following equivalent formulations of
the Tortkara identity:

area(area(a, b), area(c, b)) = area(vol(a, b, c), b),
area(area(a, b), area(c, d)) + area(area(a, d), area(c, b)) = area(vol(a, b, c), d) + area(vol(a, d, c), b),
2 · area(area(a, b), area(c, d))
= area(vol(a, b, c), d) + area(vol(a, d, c), b) + area(vol(b, a, d), c) + area(vol(b, c, d), a)

where vol(x, y, z) := area(area(x, y), z)+area(area(y, z), x)+area(area(z, x), y), and where the first
identity is [DIM19, Equation (2)] while the second identity was the first version of the Tortkara
identity presented in [Dzh07, Section 2 and 6] and can also be found in [DIM19, Equation (3)].
We chose the notation vol because ⟨vol(u, v, w), S(X)0,T ⟩ is six times the signed volume ([DR19,
Equation (4), Definition 3.27 and Theorem 3.28]) of the curve (U, V,W ), where

Ut =
⟨︂
u, S(X)0,t

⟩︂
, Vt =

⟨︂
v, S(X)0,t

⟩︂
, Wt =

⟨︂
w, S(X)0,t

⟩︂
.

The Tortkara identity is readily verified on all of T≥1(Rd) by computing

area(area(1, 2), area(3, 2)) = −2 1223 + 2 1232 + 2 2213− 2 2231− 2 3212 + 2 3221

= area(vol(1, 2, 3), 2),

where ([DR19, Section 3.1])

vol(1, 2, 3) = 123− 132− 213 + 231 + 312− 321.

Indeed, this computation suffices to show the Tortkara identity on T≥1(Rd) due to the universal
property of the free Zinbiel algebra (T≥1(R3),≻), i.e. for any a, b, c ∈ T≥1(Rd), there is a unique
Zinbiel homomorphism (T≥1(R3),≻) → (T≥1(Rd),≻) with 1 ↦→ a, 2 ↦→ b, 3 ↦→ c, and then the
Tortkara identity follows for a, b, c from the above computation by the homomorphism property
and the fact that area is nothing but the antisymmetrization of ≻.
Remark 4.6.1. In [Bre18], Bremner studies the Tortkara triple product which in our notation is
given by

tri(a, b, c) := area(area(a, b), c),
and thus vol relates to tri by being the sum of the cyclic permutations of its arguments,

vol(a, b, c) = tri(a, b, c) + tri(b, c, a) + tri(c, b, a).

Besides antisymmetry in the first two arguments tri(a, a, b) = 0, Bremner found a new relation
in arity 5 [Bre18, Theorem 5] and another new relation in arity 7 [Bre18, Theorem 7] for the
Tortkara triple product of the free Zinbiel algebra.

Proof of equivalence of the Tortkara identities. Let T be a vector space over an arbitrary field
with a bilinear antisymmetric operation t and

J(x, y, z) := t(t(x, y), z) + t(t(y, z), x) + t(t(z, x), y).

1. Assume first that for all x, y, z ∈ T we have

t(t(x, y), t(z, y)) = t(J(x, y, z), y).
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Then, for all a, b, c, d ∈ T , due to bilinearity, we have

t(t(a, b), t(c, b)) + t(t(a, b), t(c, d)) + t(t(a, d), t(c, b)) + t(t(a, d), t(c, d))
= t(t(a, b+ d), t(c, b+ d)) = t(J(a, b+ d, c), b+ d)
= t(J(a, b, c), b) + t(J(a, b, c), d) + t(J(a, d, c), b) + t(J(a, d, c), d).

Since t(t(a, b), t(c, b)) = t(J(a, b, c), b) and t(t(a, d), t(c, d)) = t(J(a, d, c), d), we obtain the
identity

t(t(a, b), t(c, d)) + t(t(a, d), t(c, b)) = t(J(a, b, c), d) + t(J(a, d, c), b)

for all a, b, c, d ∈ T . Using antisymmetry, we furthermore get

t(t(a, b), t(c, d)) + t(t(a, b), t(c, d))
= t(t(a, b), t(c, d)) + t(t(a, d), t(c, b)) + t(t(b, a), t(d, c)) + t(t(b, c), t(d, a))
= t(J(a, b, c), d) + t(J(a, d, c), b) + t(J(b, a, d), c) + t(J(b, c, d), a)

If the field is of characteristic different from two, this reads as

2t(t(a, b), t(c, d)) = t(J(a, b, c), d) + t(J(a, d, c), b) + t(J(b, a, d), c) + t(J(b, c, d), a)

for all a, b, c, d ∈ T .

2. Assume now that for all a, b, c, d ∈ T we have

t(t(a, b), t(c, d)) + t(t(a, d), t(c, b)) = t(J(a, b, c), d) + t(J(a, d, c), b).

This immediately implies

t(t(x, y), t(z, y)) + t(t(x, y), t(z, y)) = t(J(x, y, z), y) + t(J(x, y, z), y)

for all x, y, z ∈ T , which is an empty statement in characteristic two, but in characteristic
different from two reduces to

t(t(x, y), t(z, y)) = t(J(x, y, z), y). (4.23)

3. For the last implication we want to show, assume that the characteristic of the underlying
field is different from two and for all a, b, c, d ∈ T we have

2t(t(a, b), t(c, d)) = t(J(a, b, c), d) + t(J(a, d, c), b) + t(J(b, a, d), c) + t(J(b, c, d), a).

This implies

2t(t(x, y), t(y, z)) = 2t(J(x, y, z), y) + t(J(y, x, y), z) + t(J(y, z, y), x) = 2t(J(x, y, z), y),

since due to antisymmetry
J(y, x, y) = J(y, z, y) = 0.

Since the characteristic is different from two, we can divide by two, and thus again arrive
at (4.23).
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In [DIM19, Section 5] it is shown that in d = 2, (A , area) is the free Tortkara algebra.8

This linear space has a surprisingly simple description. The following is [DIM19, Theorem 2.1]
(for the proof see [DIM19, Section 3]; see also [Rei19, Section 3.2] for another proof in the special
case d = 2).
Lemma 4.6.2.

A = spanR{i : i a letter } ⊕ spanR{w(ij− ji) : w a word, i, j letters}. (4.24)

Example 4.6.3. We have that [DR19, Equation (4)]

Invn :=
∑︂

σ∈Sn

sign(σ)σ(1) · · ·σ(i),

where we interpret σ as a permutation of the letters, is in A for d ≥ n ≥ 2 by Lemma 4.6.2, an
element which plays an important role as the lowest order SL invariant component of the signature
in dimension d = n, see [DR19, Section 3.3], and can be interpreted as the d = n dimensional
signed volume of the path underlying the signature [DR19, Definition 3.27 and Theorem 3.28].
In particular, we recover

Inv2 = area(1, 2),
Inv3 = vol(1, 2, 3),

and in fact this can be generalized by defining the multilinear map

voln : T (Rd)n → T (Rd)

such that voln(a1, . . . , an) is the image of Invn under the unique Zinbiel homomorphism (unique
due to freeness of the halfshuffle algebra as a Zinbiel algebra) that maps i ↦→ ai for i = 1, . . . , n.
Written out, this means

voln(a1, . . . , an) =
∑︂

σ∈Sn

sign(σ) (((aσ(1) ≻ aσ(2))≻ aσ(3))≻ · · · )≻ aσ(n).

Through the fact that Invn ∈ A for d = n, it is immediate that we obtain the restriction

voln : A n → A

for any d ≥ 2.

As a direct consequence of the theorem by Dzhumadil’daev, Ismailov and Mashurov 4.6.2, we get
the following property with respect to the deconcatenation coproduct, which is very important
for expected signature computations in the context of martingaloids as we saw in Proposition
4.5.10.
Corollary 4.6.4. A ⊕ R is a right coideal with respect to ∆•, i.e. ∆• A ∈ T (Rd)⊗ (A ⊕ R)

Proof. For letters i, we have ∆• i = e ⊗ i + i ⊗ e, and thus the statement is clear. For and
(empty or non-empty) word w and letters i, j we have

∆• w(ij− ji) =
∑︂

u,v: uv=w

u⊗ v(ij− ji) +wi⊗ j−wj⊗ i +w(ij− ji)⊗ e ∈ T (Rd)⊗ (A ⊕R),

where we sum over all (empty or non-empty) words u, v such that uv = w.
8Recall the definition of A from the introduction: the smallest linear space containing the letters 1, . . . d and

being closed under the area operation.
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We note the following conjecture, which was shown to hold true in the case d = 2 in [DIM19,
Section 5] as well as in [Rei19, Section 3.2, Theorem 31]. The case d ≥ 3 is still open.

Conjecture 4.6.5. A is linearly generated by strict left-bracketings of the area operation. In
particular, a linear basis for A (without the single letters) is given by

area(area(area(i1, i2), i3), . . . , in), n ≥ 2, i1, . . . , in ∈ {1, . . . , d}, i1 < i2.

Example 4.6.6. For example, with d = 2, the tensor 12(12−21), which is in A , can be written
as

12(12− 21) = 1
6 [2 area(area(area(1, 2), 1), 2)− area(area(area(1, 2), 2), 1)].

It turns out that for a bilinear, antisymmetric operation, showing that all bracketings can be
rewritten as linear combinations of left-bracketings reduces to showing that this is possible for
a small subset of bracketings. We have not been able to show that this subset of bracketings
can be rewritten, but want to record this general fact nonetheless. We formulate the statement
imprecisely here, and leave the exact statement Proposition 4.8.2 and its proof to the appendix.

Proposition 4.6.7. To be able to rewrite any bracketing to a linear combination of left-bracketings,
it is enough to verify this for bracketings of the form

area(area(. . . , area(area(a1, a2), a3), . . . , an−2), area(an−1, an)), ai ∈ A .

While trying to find a proof for Conjecture 4.6.5 for d ≥ 3, we investigated in detail the operator
←−−area given by the following definition.

Definition 4.6.8. If w = l1 · · · ln is a word, we define←−−area(w) to be the left-bracketing expression

area(. . . area(area(area(l1, l2), l3), l4), . . . , ln).

This is expanded linearly to an operation on the tensor algebra with ←−−area(e) = 0 and ←−−area(l) = l
for any letter l.

We came across some interesting properties.
First, we show that there is an expansion formula for ←−−area(w) in terms of permutations of the
letters in the word w. To this end, define the right action of a permutation σ ∈ Sn on words of
length n as

σ := lσ(1) · · · lσ(n),

where w = l1 · · · ln.

Proposition 4.6.9. We have

←−−area(l1 · · · ln) = l1 · · · ln θn,

where

θn :=
∑︂

σ∈Sn

fn(σ)σ
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and fn : Sn → {−1, 1} is given as

fn(σ) =
n∏︂

i=1
gi(σ)

with

gi(σ) =
{︄

+1, if σ−1(j) < σ−1(i) for all j ∈ N with j < i,
−1, else.

Proof. For n = 1, there is only the identity permutation and f1(id) = g1(id) = 1, thus the
statement is obviously true. For n = 2, we have S2 = {id, (12)}, f2(id) = −f2((12)) = 1 and

area(l1l2) = l1l2 − l2l1 = f2(id)l1l2 + f2((12))l2l1.

Assume the statement holds for some n ∈ N \ {1}. Then,
←−−area(l1 · · · ln+1) = area(←−−area(l1 · · · ln), ln+1)

=
∑︂

σ∈Sn

fn(σ) lσ(1) · · · lσ(n)ln+1 −
∑︂

σ∈Sn

fn(σ) ln+1 ≻ (lσ(1) · · · lσ(n))

=
∑︂

σ̃∈Sn+1:
gn+1(σ̃)=1

fn+1(σ̃) lσ̃(1) · · · lσ̃(n+1) −
∑︂

σ∈Sn

fn(σ)
(︁
ln+1 � (lσ(1) · · · lσ(n−1))

)︁
lσ(n)

=
∑︂

σ̃∈Sn+1:
gn+1(σ̃)=1

fn+1(σ̃) lσ̃(1) · · · lσ̃(n+1) +
∑︂

σ̃∈Sn+1:
gn+1(σ̃)=−1

fn+1(σ̃) lσ̃(1) · · · lσ̃(n+1)

=
∑︂

σ̃∈Sn+1

fn+1(σ̃) lσ̃(1) · · · lσ̃(n).

We furthermore have the following surprising identity.

Proposition 4.6.10. For all integers n > 2, we have

←−−area(1 l(2 · · · n)) = 1←−−area(l(2 · · · n)), (4.25)

where l is the left Lie bracketing. This implies (by freeness of the half-shuffle algebra)

←−−area(v l(w)) =←−−area(v)←−−area(l(w))

for words v, w such that |w| ≥ 2.

Remark 4.6.11. Note that due to the well-known fact that strict left Lie bracketings linearly
generate the free Lie algebra, more generally formulated, it holds that

←−−area(vx) =←−−area(v)←−−area(x)

for any v ∈ T (Rd) and any Lie polynomial x with ⟨x, i⟩ = 0 for all letters i.
Remark 4.6.12. In particular, we have

←−−area(l1 · · · lnln+1)−←−−area(l1 · · · ln+1ln) = 2 ←−−area(l1 · · · ln−1)(lnln+1 − ln+1ln)

for any letters l1, . . . , ln+1.
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Proof. For the base case, we compute
←−−area(123− 132) = 2(123− 132) = 1←−−area(23− 32).

Assume (4.25) holds for some integer n > 2 and let w be a word of length n− 1. Then, for any
letter i,

←−−area(1 l(wi)) =←−−area(1l(w)i− 1il(w)) =←−−area(1l(w)i)−←−−area(1i)←−−area(l(w))
=←−−area(1l(w))i− i≻←−−area(1l(w))−←−−area(1i)←−−area(l(w))
=1←−−area(l(w))i− i≻ (1←−−area(l(w)))− 1i←−−area(l(w)) + i1←−−area(l(w))
=1←−−area(l(w))i− 1(i≻←−−area(l(w)))− 1i←−−area(l(w))
=1←−−area(l(w)i)− 1i←−−area(l(w))
=1←−−area(l(w)i)− 1←−−area(il(w))
=1←−−area(l(wi)),

where we used that i≻(1←−−area(l(w))) = i1←−−area(l(w))+1(i≻←−−area(l(w))) due to the combinatorial
expansion formula for the half-shuffle.

Interestingly, ρ admits a permutation expansion which is quite similar to that of ←−−area, in fact
again via fn, just that now only a subset Tn of all permutations Sn is involved.

Proposition 4.6.13. We have

ρ(l1 · · · ln) = l1 · · · ln ϑn,

where

ϑn :=
∑︂

σ∈Tn

fn(σ)σ,

fn : Sn → {−1, 1} is as in Lemma 4.6.9 and Tn is the set of all σ ∈ Sn such that {σ(i), . . . , σ(n)}
is an interval of integers (a set of the form [a, b] ∩ N) for all i ∈ {1, . . . , n− 1}.

Proof. For n = 1, there is only the identity permutation and f1(id) = g1(id) = 1, thus the
statement is obviously true. For n = 2, we have T2 = {id, (12)}, f2(id) = −f2((12)) = 1 and

ρ(l1l2) = l1l2 − l2l1 = f2(id)l1l2 + f2((12))l2l1.

Assume the statement holds for some n ∈ N \ {1}. Then, using the recursive definition of ρ from
Equation (4.5),

ρ(l1 · · · ln+1) = l1ρ(l2 · · · ln+1)− ln+1ρ(l1 · · · ln)

=
∑︂

σ∈Tn

fn(σ) l1l
′
σ(1) · · · l

′
σ(n) −

∑︂
σ∈Tn

fn(σ) ln+1lσ(1) · · · lσ(n)

=
∑︂

σ̃∈Tn+1:
σ̃(1)=1

fn+1(σ̃) lσ̃(1) · · · lσ̃(n+1) +
∑︂

σ̃∈Tn:
σ̃(1)=n+1

fn+1(σ̃) lσ̃(1) · · · lσ̃(n+1)

=
∑︂

σ̃∈Tn+1

fn+1(σ̃) lσ̃(1) · · · lσ̃(n),

where l′i = li+1.
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Via the recursive formula for ρ, we also get an alternative proof of the following.

Corollary 4.6.14. Im ρ ⊂ A

Proof. It suffices to show ρ(w) ∈ A for any word w. We have ρ(e) = 0, ρ(i) = i ∈ A and
ρ(ij) = ij− ji ∈ A for any letters i, j. Let n ≥ 2 and assume that ρ(w) ∈ A for any word w
with |w| = n. Then, for any word v with |v| = n− 1 and any letters i, j, we have

ρ(ivj) = iρ(vj)− jρ(iv) ∈ A

since ρ(vj), ρ(iv) ∈ A with |ρ(vj)| = |ρ(iv)| = n ≥ 2 due to the induction hypothesis, and by
Lemma 4.6.2, the non-letter part of A is stable under concatenation of any element of the tensor
algebra from the left. Thus, the induction hypothesis also holds for all words of length n+1.

4.7 Conclusion

We have linked the area operation in the tensor algebra to work in control theory and more
abstract work on Tortkara algebras. We have shown that starting from letters and applying the
area operation, one obtains enough elements to shuffle-generate the tensor algebra.
There are many open directions for research. We have not identified a minimal set of areas-
of-areas which is just enough to shuffle-generate the tensor algebra – i.e. to shuffle-generate it
exactly. The linear span of the areas-of-areas has been identified, but a basis for it in terms of
areas-of-areas has not.

4.7.1 Open combinatorial problems

1. What is span{area(i1�· · ·�in, j1�· · ·�jm), n,m ∈ N, i1, . . . in, j1, . . . jm letters}? Does
it shuffle generate together with the letters, and if not what is the smallest subalgebra of the
associative shuffle algebra containing it and the letters? This is the algebraic formulation of
the question “what do we know about a path if we are only allowed to collect its increment
and the values of the first area of any two dimensional polynomial image of the path”?

2. Give linear bases for A �A , A �A �A , . . .. Does
∑︁n

m=1 A �m already arrive at T (Rd)
for a finite n?

3. Give a minimal generating set for T (Rd) as a Tortkara algebra. Is it free?

4. In light of Proposition 4.6.10, look at
⟨︁
x ∈ g(Rd) : ⟨x, i⟩ = 0 ∀ i; ·

⟩︁
and its image under

←−−area

5. What are the eigenspaces of ←−−area?

4.8 Appendix

Lemma 4.8.1. Let V =
⨁︁

n≥1 Vn be a graded vector space, each Vn finite dimensional, and
denote the grading |.|V .
Consider R[V ], the symmetric algebra over V (see Section 4.4), with two different gradings,
defined on monomials as follows
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• |xm|deg := m (denote the corresponding projection onto degree 1 by projdeg
1 ).

• |xm|weight := m · |x|V .

Let Y ⊂ R[V ], countable, be such that every y ∈ Y is homogeneous with respect to |.|weight. Then:

Y generates R[V ] (as a commutative algebra)
if and only if

spanR projdeg
1 Y = V

If moreover projdeg
1 y, y ∈ Y , are linearly independent, then Y freely generates R[V ] (as commu-

tative algebra).

Proof. We show the first statement.
⇒: Assume v ∈ V ⊂ R[V ] is not in the span of projdeg

1 Y . Then it is clearly not in the algebra
generated by Y . Hence Y does not generate R[V ]. This proves the contrapositive.
⇐: Denote, local to this proof, by ⟨M⟩ the subalgebra generated by M ⊂ R[V ].
Claim: ⟨V1⟩ ⊂ ⟨Y ⟩. Indeed, v ∈ V1 can, by assumption be written as a linear combination of
some

projdeg
1 yi,

where yi ∈ Y . Since the yi are homogeneous they must be of weight 1. Hence projdeg
1 yi = yi,

hence V1 ⊂ ⟨Y ⟩, hence ⟨V1⟩ ⊂ ⟨Y ⟩, which proves the claim.
Now let ⟨V1 ⊕ · · · ⊕ Vn⟩ ⊂ ⟨Y ⟩. Claim: Vn+1 ⊂ ⟨Y ⟩. Indeed, v ∈ Vn+1 can be written as a linear
combination of some

projdeg
1 yi,

where yi ∈ Y , of weight n+ 1. Then

yi = projdeg
1 yi + ri,

with ri monomials (of order 2 an higher) in terms from V1⊕· · ·⊕Vn, i.e. ri ∈ ⟨V1⊕· · ·⊕Vn⟩ ⊂ ⟨Y ⟩.
Hence v ∈ ⟨Y ⟩.
Hence ⟨V1 ⊕ · · · ⊕ Vn ⊕ Vn+1⟩ ⊂ ⟨Y ⟩. Iterating, we see that R[V ] = ⟨V ⟩ ⊂ ⟨Y ⟩, which proves the
first claim.

We finally give a precise statement and proof of Theorem 4.6.7
Let V be an R-vector space and let

B : V × V → V,

be a bilinear map.9 We encode bracketings as planar trees. Define the complete left-bracketed
tree with n leaves as

LeftBracketTree1 :=
LeftBracketTreen := LeftBracketTreen−1 →• , n ≥ 2,

9This section would be most comfortably be formulated in the language of operads. But this would require
more mathematical setup, which we want to avoid.
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her →• denotes grafting to a new root.
Define

SpecialTreen := LeftBracketTreen−2 →• LeftBracketTree2.

For example

SpecialTree4 =

SpecialTree5 =

SpecialTree6 = .

For any tree τ with n leaves, and a1, . . . , an ∈ V write

τ(a1, . . . , an),

as the corresponding bracketing. We extend this definition to the case where (some of) the ai

are planar trees (with labeled leaves) themselves, by just replacing the respective leaf of τ with
ai. (This is consistent, when considering a ∈ V as the tree with exactly on vertex, labeled a.)
On every new level n+ 1, it is enough to check that SpecialTreen+1 can be expressed in terms of
left brackets:
Proposition 4.8.2. Assume that B is symmetric or anti-symmetric.
Assume, for some n, that all trees τ with |τ |leaves ≤ n can be expressed in terms of left brackets,
i.e. for some c(τ , σ) ∈ R,

τ(a1, . . . , an) =
∑︂

σ∈Sn

c(τ , σ)LeftBracketTreen(aσ(1), . . . , aσ(n)). ∀a1, . . . , an ∈ V.

Assume that (every labeling of) SpecialTreen+1 can be expressed in terms of left brackets. Then:

(every labeling of) every tree σ with |σ|leaves = n+ 1 can be expressed
in terms of left brackets.

Proof. Consider

τ = T1 T2 ,

with

T1 = τ1(a1, . . . , am)
T2 = τ2(am+1, . . . , am+ℓ)

with |τ |leaves = n + 1 = m + ℓ. By using symmetry/antisymmetry, we can assume |τ1|leaves = m ≥
|τ2|leaves = ℓ.
By assumption, we can write both τ1 and τ2 in terms of left-bracketings. It is hence enough to
consider

τ1 = LeftBracketTreem

τ2 = LeftBracketTreeℓ,
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with m+ ℓ = n+ 1 and m ≥ ℓ.
Claim: we can reduce to ℓ = 1 and ℓ = 2.
Indeed, write

τ1 = ((t1, t2), . . . , tm−1)
τ2 = (tm, tm+1),

with

t1 = (a1, a2)
t2 = a3

. . .

tm−1 = am

tm = ((am+1, am+2), . . . , am+ℓ−1)
tm+1 = am+ℓ.

If ℓ ≥ 2 we have m+ 1 ≤ n. Hence by assumption

τ =
∑︂

left bracketings (t1, . . . , tm+1).

Now, consider the rightmost spot in each left-bracketing.

• If it is taken by a letter: ⇝ ℓ = 1.

• If it is taken by t1: ⇝ ℓ = 2.

• If it is taken by tm: |tm|leaves = |τ2|leaves − 1 = ℓ− 1. So we go from ℓ to ℓ− 1.

We can finish by induction.
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Chapter 5

Conclusion

5.1 Scientific contribution and impact of our results

The result on renormalizing RDEs, Theorem 2.5.10, has been an important inspiration for the
article [BCCH21], where a similar result for renormalizing SPDEs in the framework of regularity
structures was presented as [BCCH21, Theorem 3.25]. In [BCE20], the duality Proposition 2.3.14
in the form of Remark 2.3.16 (there [BCE20, Lemma 4]) is used for H(A), where A is the algebra
corresponding to a commutative semigroup, to introduce the arborified Hoffman exponential M∗

v

[BCE20, Definition 1 and Theorem 2] with v = (vi)i (in our formalism) given by

vi =
∑︂

τ :{τ}=i
|τ |≥2

1
τ !τ

where {τ} denotes the product of the labels of τ in A and τ ! is the tree factorial. Our translation-
renormalization map Mv can furthermore be embedded into the free transitive action on the
space of branched rough paths developed in [TZ20], with the embedding specified in [TZ20,
Equation (6.5)]. In [Rah21, Section 6], translation is introduced for planarly branched rough
paths, and similar to our Theorem 2.5.10, compatibility with RDEs on homogenous spaces is
shown in [Rah21, Proposition 6.2]. The special case of translating in time direction only with
a non-time containing primitive element from Theorem 2.5.1 (ii) is described as an addition of
a log-linear path in [BFPP22, Corollary 4.18]. Furthermore, [BFPP22, Section 3.4] discusses
translation in the case of (smooth) quasi-geometric rough paths. Overall, the investigation of
higher order translation of rough paths as renormalization and the direct, functional connection
with regularity structures provides an introduction to the formalism of [BHZ19] for researchers
fluent with rough paths theory.
Even though the theory behind Chapter 3 of the signature being a Zinbiel homomorphism has
been laid out before, our presentation and application provides an explicit formulisation that
is new in its accessibility for readers from both algebraic geometry and signature/rough path
theory. The author of this thesis isn’t aware of any prior work that lays out the compatibilty
of the signature with the action of polynomial maps on paths space so clearly. Analogs of our
results Theorem 3.1.2 and Corollary 3.3.5 for generalized iterated-sums signatures defined on the
free commutative tridendriform algebra are given in [DET20a, Theorem 3.14 and Corollary 3.16].
The results in Chapter 4 establish areas of areas as an important, meaningful subset of sig-
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nature components, whose importance to applications, including its characterization as those
components which are piecewise linear for every piecewise linear path, is in particular explored
in Section 4.5. Furthermore, in Sections 4.2 and 4.3 we reformulate the study of coordinates of
the first kind by Eugénio M Rocha in a purely algebraic manner, unfortunately again with the
conclusion that the resulting formula doesn’t simplify their computation (Remark 4.3.13). Our
characterization of (free) homogeneous shuffle generating sets is applicable far beyond the areas
of areas case, and up to the best knowledge of the author of this thesis, the results haven’t been
written down that explicitly before, although certain experts might have already been aware
of these facts (especially those having a deep understanding of the Milnor Moore theorem, as
Joscha Diehl pointed out to the author of the thesis). Our main result is reproven in a more
direct fashion in [Sal21, Theorem 4.4.2]. In [DET20b, Definition 5.7], a “discrete area map”
area is introduced on the free commutative tridendriform algebra and it is shown in [DET20b,
Theorem 5.9] that the Hoffman exponential constitutes a Tortkara isomorphism from A (S(V ))
to the smallest subspace of T≥1(S(V )) containing S(V ) and being closed under area.

5.2 Outlook

Together, the individual projects collected in this thesis lay out in detail how Hopf, (pre-)Lie,
Zinbiel, dendriform and Tortkara algebras have a direct application in the theory of rough paths
and iterated integral signatures of paths. However, as the many open problems especially in the
case of Tortkara algebras and their direct linking with questions about the signature, as well as
the very modern classes of quasi-geometric and planarly branched rough paths show, this story
is far from being told completely. With more and more meaningful examples of rough paths for
commutative connected graded Hopf algebras emerging, the interest in (more or less) universal
statements for these objects will grow further, and the author of this thesis is convinced that one
of the most central questions in this general picture is how to algebraically characterize those
commutative connected graded Hopf algebras which give rise to a rough path theory that includes
a property of uniqueness of the signature up to tree-like equivalence. Furthermore, in prominent
cases where such a property does not hold, one would ask what is the kernel of the signature map,
and how one could minimally extend the given Hopf algebra structure to restore this property.
Ultimately, the goal is a full picture of how the analysis works together with the graded Hopf
algebra structure, as well as the ’finer structure’ of certain Hopf algebras as we observe it with
the Zinbiel structure in the case of weakly geometric rough paths, the commutative tridendriform
structure in the case of quasi-geometric rough paths (both concerning the commutative product)
and the pre-Lie structure in the case of branched rough paths as well as the post-Lie structure
in the case of planarly branched rough paths (both concerning the Lie algebra underlying the
Lie group of characters the rough paths lives in).
Given how our translation operators were defined in Sections 2.2.2 and 2.3.2.3, the following
definition seems justified to obtain a generalization. Independently from this thesis, a very
similar construction has been described in [Rah21, Definiton 8 and Theorem 5.1].

Definition 5.2.1. We call a graded Lie admissible algebra L =
⨁︁∞

n=1 Li with graded Lie ad-
missible product ▷ and a (empty or non-empty) set of further graded multilinear maps (sj

n),
sj

n : Ln → L, where n may be any nonnegative integer, a fully renormalizable graded Lie-
admissible system over W ,
if L1 = W generates (L, ▷, (sj

n)), i.e. the smallest subspace of L containing L1 = W and being
closed under ▷ and all (sj

n) is L itself, and (L, ▷, (sj
n)) is ’internally free’ over W , i.e. for any lin-

ear map v : W → L, there exists a homomorphism Tv of ▷ and all sj
n, i.e. (Tvx)▷(Tvy) = Tv(x▷y)
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for all x, y ∈ L and sj
n ◦ T×n

v = Tv ◦ sj
n for all sj

n, such that

Tvw = w + v(w) ∀w ∈W.

Lie admissibility of ▷ means nothing more than that (L, [·, ·]▷) with [x, y]▷ = x ▷ y− y ▷ x is a Lie
algebra. Thus, we can form the universal enveloping algebra U(L) to obtain a connected graded
cocommutative Hopf algebra whose space of homogeneity one is W , together with a monoid of
Hopf algebra endomorphisms (Tv)v indexed over all linear maps v : W → L, L being the space
of primitive elements of U(L), such that Tvw = w + v(w). Finally, we can look at rough paths
over the graded dual of U(L), which is then a connected graded commutative Hopf algebra, and
study the effect of the translations-renormalizations (Tv)v on those rough paths.
In the well-established case of weakly geometric rough paths and the iterated-integral signature
with Ree’s shuffle identity, half a century after the initiation through Chen’s series of papers, we
as a community of researchers investigating signature-rough-paths theory are closing in on a more
and more complete understanding of individual results as part of a big picture of an algebraic ge-
ometry of paths and time series.
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Frequently used notation

⋆ The non-commutative associative Grossman-Larson product on H∗, 28

• The non-commutative associative concatenation product of words, 3

■ The associative shuffle-concatenation product on W, 89

⊵ The left pre-Lie product on W given as the tensor product of the halfshuffle ≻ and
the Lie bracket [·, ·], 97

⊵Sym The symmetrization of the left pre-Lie product ⊵, 99

≻ The non-associative right half-shuffle product of words satisfying the Zinbiel iden-
tity, 75

▶ The pre Lie product of smooth vector fields on Re, 31

↷ The pre-Lie product on trees of the free pre-Lie algebra B(V ), 31

A The area Tortkara algebra generated by the letters, 87

a The universal homomorphism from the free associative algebra to the Grossman-
Larson algebra with a(i) = •i, 29

Adv The linear map given by adi w = [i, w], adiv w = [i, adv w], 98

adv The linear map given by adv w = [v, w], 98

ad■;x The linear map given by ad■;x y = [x, y]■, 110

Area The signed area between two functions, 86

area The algebraic area product given by area(x, y) = x≻ y − y ≻ x, 86
←−−area The left bracketing of area, 129

area (τ) The area bracketing according to the binary planar tree τ , 100

˜︁area (τ) The area and � bracketing according to the tree τ ∈ ˜︃BPT, 113

B The space of unordered rooted trees with vertices labelled from {0, . . . , d}, 28

b The linear map from T (Rd+1) to B(Rd+1) given by b(e) := 0, b(i) := •i, b(iw) :=
•i ↷ b(w), 45

B− The subspace of B spanned by trees with no label f and with at most ⌊1/α⌋ nodes,
57

BPTn The set of binary planar trees with n leaves, 100˜︃BPTn The set of binary planar trees with nodes and leaves in BPT, 112

[., .]■ The Lie bracket given as the antisymmetrization of ■, 110
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c A coefficient function on BPT with c(τ) = 2c(τ ′)c(τ ′′)(|τ ′|leaves + |τ ′′|leaves − 1), 100

D The unique derivation of the • product with Di = i, 94

D−1 The inverse of D on T≥1((Rd)), 94

D−1 The lift of D−1 to W given by D−1(p⊗ q) = p⊗D−1(q), 95

D The lift of D to W given by D(p⊗ q) = p⊗D(q), 95

δ The algebra homomorphism from H to A⊗H defined on trees by extraction, 33

∆⋆ The Butcher-Connes-Kreimer coproduct dual to ⋆, 28

∆+ Coaction of T+ on T , also coproduct on T+, later redefined as coaction of T̃+ on T̃ ,
and coproduct on T̃+, 52, 56

∆− Coaction of T− on T , later restricted to a coaction of T̃− on T , also coproduct of
T−, 51, 55

δ− The linear map (π−⊗ id)δ : H̃ → H−⊗H̃, where π− is the algebra homomorphism
given by projecting elements of B onto terms of negative degree, 61

∆• The deconcatenation coproduct on the tensor algebra dual to •, 3

∆⊙ The coproduct dual to ⊙, 28

∆� The deshuffle coproduct dual to �, 23

G− The group of characters on T−, 57

G̃+ The group of characters on T+, 58

H The space of forests composed of trees from B, 28

H− The free commutative algebra generated by the space B−, 57

H̃ H ⊕HΞ1 ⊕ ....⊕HΞd, 56

Iw The linear map given by Iwx = w ≻ x, 98

lie The [·, ·] bracketing according to the binary planar tree τ , 100

Mp The Zinbiel homomorphism associated to a polynomial map p (do not confuse with
Mv), 71

Mv The branched translation map (do not confuse with Mp), 31

⊙ The commutative associative forest product on H, 28

(Ph)h∈H A basis for the free Lie algebra g(Rd), 105

ϕ The canonical bijective linear map from B− to spanRW−, later extended to a linear
bijection from B to H̃, 57

π1 The unique linear projection onto the Lie algebra g(Rd) whose series extension
linearizes the logarithm log• : G→ g((Rd)), 107

π⊤
1 The linear map dual to π1, 107

R The primitive element R ∈ T ⟨⟨Rd⟩⟩ given by R = r(S), 95

r The Dynkin operator, 94

r The lift of r to W given by r(p⊗ q) = p⊗ r(q), 95

ρ The linear map dual to the Dynkin operator r, 95
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Rn The n-th level of R, 99

S The grouplike element S ∈ T ⟨⟨Rd⟩⟩ given by S =
∑︁

w
w ⊗ w, 95

s A scaling of Rd associated to an SPDE, 7

(Sh)h∈H A collection of Sh ∈ T (Rd) such that ⟨Sh, Ph′⟩ = δh,h′ , 107

shuff The linear space of shuffles from below, 117

� The commutative associative shuffle product of words, 68

σ(X) The iterated-integral signature of the path X, 2

T The vector space spanned by the trees in W, 50

T+ The free unital commutative algebra generated by W+, 52

T− The free unital commutative algebra generated by the negative degree elements of
W, 51

τ̇ ϕ(τ), 57

W The product space of tensor products W =
∏︁∞

n=0 T (Rd)⊗ Tn(Rd), 89

Tv The geometric translation map, 25

T̃ The subspace of T spanned by W̃, 54

T̃+ The subalgebra of T+ given as the free unital commutative algebra generated by
W̃+, 55

vol The algebraic volume map given by vol(x, y, z) := area(area(x, y), z)+area(area(y, z), x)+
area(area(z, x), y), 126

W The set of all rooted trees with polynomial decorations on the nodes and where
edges ending in leaves may carry a type tΞi , i ∈ {1, . . . , d}, 50

W+ The set containing the abstract variable X and Jk(τ), τ ∈ W, 52

W− The negative degree elements of W (or W̃), 54

W̃ The subset of W of trees without node decorations, 54

W̃+ The subset of W+ spanned by all J τ for τ ∈ W, 55
←−
X The path X parametrized backwards (time inversion), 1

Ξi The abstract symbol corresponding to the driving noise ξi, 50

(ζh)h∈H Coordinates of the first kind corresponding to (Ph)h∈H , 105

⊔ Concatenation of paths, 1
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Index

algebra
dendriform, 91, 97
Leibniz, 8
pre-Lie, 10, 30, 97
Zinbiel, 76

antipode, 4
arborified Hoffman exponential, 137
area, 86
area path, 79

branched rough path, 20
Butcher-Connes-Kreimer coproduct, 11

characters, 4
Chen’s identity, 3
cocycle, 11
commutative quasishuffle algebra, 10
concatenation

of paths, 1, 69
product of words, 88

coordinates of the first kind, 105
coproduct, 3

deconcatenation, 3
dendriform algebra, 91, 97
dendriform identities, 97
dilation operator, 94
Dynkin operator, 94

empty forest, 10
Euler RDE estimate, 45
exponential homomorphism, 2
exponential map, 90
extension theorem, 16

forest, 10
forest product, 10
formal power series, 68
fractional Brownian motion, 40
free

associative algebra, 8
Leibniz algebra, 8
Lie algebra, 9
pre-Lie algebra, 10
Zinbiel algebra, 8, 76

free generating set, 116

Garsia idempotent, 119
generating set, 115
geometric rough path, 20
Grossman-Larson product, 11
grouplike elements, 89, 91

Hoff process, 40
homogeneous polynomial map, 70
Hopf algebra

over an unital commutative ring, 90

initial object, 11
iterated-integral signature, 2, 68

Koszul dual, 8

Leibniz algebra, 8
logarithm, 90
logarithmic derivative, 94

martingale, 123
martingaloid, 124
model, 7
modelled distributions, 7
Munthe-Kaas-Wright Hopf algebra, 6

noise, 6

planarly branched rough path, 6
planimeter, 87
pre-Lie algebra, 10, 30, 97
primitive elements, 89, 91

quasi-geometric rough path, 6
quasishuffle algebra, 10

commutative, 10

R-tree, 4
RDE solution, 45
reconstruction operator, 7
reconstruction theorem, 7
reduced path, 5

group, 5
regularity structure, 7
renormalised model, 61
renormalization group, 8
reparametrization, 1
rough path

branched, 20
planarly branched, 6
quasi-geometric, 6
weakly geometric, 20

scaling, 7
shuffle product, 68, 88
shuffle relation, 3
signature, 2, 68

kernel, 5
signed area, 86
signed volume, 13, 126, 128
SPDE, 6
stochastic partial differential equation, 6
structure group, 7
subcritical equation, 49
Sweedler’s notation, 3
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time inversion, 1
time-discrete martingale, 124
Tortkara identity, 125
Tortkara triple product, 126
tree factorial, 137
tree-like equivalence, 4
tree-like path, 4
truncated signature, 5

universal property, 76
unshuffle coproduct, 89

weakly geometric rough path, 20
white noise, 6

Young integration, 5

Zinbiel algebra, 76
Zinbiel identity, 4
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