In how far does the signature characterize the path?

Rosa Preiß

Universität Potsdam

Analysis Seminar Potsdam, Zoom, February 10, 2022

Examples of tree-like equivalent paths

Examples of tree-like equivalent paths

Examples of paths which are not tree-like equivalent

Examples of paths which are not tree-like equivalent

Definition (Hambly-Lyons, Boedihardjo-Geng-Lyons-Yang)

Let (S, O) be a topological space. A continuous map $X : [s, t] \to S$ is called a tree-like path if there is an \mathbb{R} -tree τ , a continuous map $\phi : [s, t] \to \tau$ with $\phi(t) = \phi(s)$ and a map $\psi : \tau \to S$ such that $X = \psi \circ \phi$.

Concatenation

Definition (Hambly-Lyons, Boedihardjo-Geng-Lyons-Yang)

Let (S, O) be a topological space. A continuous map $X : [s, t] \to S$ is called a tree-like path if there is an \mathbb{R} -tree τ , a continuous map $\phi : [s, t] \to \tau$ with $\phi(t) = \phi(s)$ and a map $\psi : \tau \to S$ such that $X = \psi \circ \phi$.

Definition (Hambly-Lyons, Boedihardjo-Geng-Lyons-Yang)

Two continuous maps $X : [s,t] \to S$, $Y : [u,v] \to S$ are called tree-like equivalent if $X \sqcup \overleftarrow{Y} : [s,t+v-u] \to S$ "exists" and is tree-like.

Definition (Hambly-Lyons, Boedihardjo-Geng-Lyons-Yang)

Let (S, O) be a topological space. A continuous map $X : [s, t] \to S$ is called a tree-like path if there is an \mathbb{R} -tree τ , a continuous map $\phi : [s, t] \to \tau$ with $\phi(t) = \phi(s)$ and a map $\psi : \tau \to S$ such that $X = \psi \circ \phi$.

Definition (Hambly-Lyons, Boedihardjo-Geng-Lyons-Yang)

Two continuous maps $X : [s,t] \to S$, $Y : [u,v] \to S$ are called tree-like equivalent if $X \sqcup \overleftarrow{Y} : [s,t+v-u] \to S$ "exists" and is tree-like.

The tree-like equivalence classes of paths then define the reduced path groupoid/the reduced path group.

It is called *connected* if $\dim(\mathcal{H}_0) = 1$.

It is called *connected* if $\dim(\mathcal{H}_0) = 1$.

It is called *cocommutative* if Δ is cocommutative.

It is called *connected* if $\dim(\mathcal{H}_0) = 1$.

It is called *cocommutative* if Δ is cocommutative.

It is said to be of finite type if $\dim(\mathcal{H}_n) < \infty$ for all n.

Let ${\mathcal H}$ be a connected graded cocommutative Hopf algebra of finite type (cgccft Hopf algebra) and

$$P(\mathcal{H}) = \{ x \in \mathcal{H} | \Delta x = x \otimes \mathfrak{e} + \mathfrak{e} \otimes x \}$$

Theorem (Milnor-Moore)

 $\mathcal{H} \cong \mathcal{U}(P(\mathcal{H}))$, the universal enveloping algebra of the Lie algebra $\mathcal{P}(\mathcal{H})$.

Let ${\mathcal H}$ be a connected graded cocommutative Hopf algebra of finite type (cgccft Hopf algebra) and

$$P(\mathcal{H}) = \{ x \in \mathcal{H} | \Delta x = x \otimes \mathfrak{e} + \mathfrak{e} \otimes x \}$$

Theorem (Milnor-Moore)

 $\mathcal{H} \cong \mathcal{U}(P(\mathcal{H}))$, the universal enveloping algebra of the Lie algebra $\mathcal{P}(\mathcal{H})$.

Corollary

If additionally $\mathcal{P}(\mathcal{H})$ is a free Lie algebra over a set of homogeneous generators $(g_i)_{i \in I}$, then the graded Hopf algebra isomorphism class of \mathcal{H} is characterized by the sequence of numbers $(h_n)_n$, where h_n is the number of g_i with $|g_i| = n$.

More precisely, $\mathcal{H} \cong \mathrm{T}^{\omega}(\mathbb{R}^{I})$ and $\mathcal{P}(\mathcal{H}) \cong \mathfrak{L}^{\omega}(\mathbb{R}^{I})$, where $\omega(\mathbf{i}) = |g_{i}|$.

Construction of a homogeneous minimal generating set

Let now ${\mathcal H}$ be an arbitrary cgccft Hopf algebra again.

To contruct a minimal generating set, we proceed as follows:

For level 1, just take any basis of $\mathcal{P}_1(\mathcal{H}) = \mathcal{H}_1$.

Construction of a homogeneous minimal generating set

Let now ${\mathcal H}$ be an arbitrary cgccft Hopf algebra again.

To contruct a minimal generating set, we proceed as follows:

For level 1, just take any basis of $\mathcal{P}_1(\mathcal{H}) = \mathcal{H}_1$.

For level n, take any (possibly empty) linearly independent set of vectors in $\mathcal{P}_n(\mathcal{H})$ which are furthermore linearly independent from the subset $\sum_{m=1}^{n} [\mathcal{P}_{n-m}(\mathcal{H}), \mathcal{P}_m(\mathcal{H})]$ and linearly generate $\mathcal{P}_n(\mathcal{H})$ together with the brackets from below.

Definition

A *p*-variation $(\mathcal{H}, \star, \Delta)$ -rough path is a map $\mathbf{X} : [0, T]^2 \to \hat{\mathcal{H}}$ such that there exists a control $\nu : [0, T]^2 \to \mathbb{R}$

1.
$$\mathbf{X}_{tt} = \mathfrak{e}$$
 and $\mathbf{X}_{st} = \mathbf{X}_{su} \star \mathbf{X}_{ut}$

2.
$$\Delta \mathbf{X}_{st} = \mathbf{X}_{st} \otimes \mathbf{X}_{st}$$

3.
$$\sup_{s \neq t} \frac{\|\mathbf{X}_{st}\|_n^p}{\nu(s,t)^n} < \infty$$

Definition

The signature of \mathbf{X} is the single group-like element \mathbf{X}_{0T} .

Theorem (Chen-Chow)

For any $n \in \mathbb{N}$ and $x \in \mathfrak{L}_{\leq n}(\mathbb{R}^d)$,

there exists a bounded variation log-signature s with $x = \text{proj}_{\leq n} s$.

Theorem (Chen-Chow)

For any $n \in \mathbb{N}$ and $x \in \mathfrak{L}_{\leq n}(\mathbb{R}^d)$, there exists a bounded variation log-signature s with $x = \operatorname{proj}_{\leq n} s$.

Conjecture

For any non-trivial Lie ideal $I \subset \mathfrak{L}(\mathbb{R}^d)$, there exist two bounded variation log-signatures $s_1 \neq s_2$ with $\operatorname{proj}_{< n}(s_1 - s_2) \in I$ for all n > 0.

Theorem

If \mathcal{H} is a connected graded cocommutative Hopf algebra of finite type and $P(\mathcal{H})$ is free over a Lie generating subset, then \mathcal{H} -rough paths are tree-like equivalent if and only if their signature agrees.

Note: This is a generalization of Boedihardjo-Chevyrev, and a consequence of Beodihardjo-Geng-Lyons-Yang.

Theorem

If \mathcal{H} is a connected graded cocommutative Hopf algebra of finite type and $P(\mathcal{H})$ is free over a Lie generating subset, then \mathcal{H} -rough paths are tree-like equivalent if and only if their signature agrees.

Note: This is a generalization of Boedihardjo-Chevyrev, and a consequence of Beodihardjo-Geng-Lyons-Yang.

Conjecture

If \mathcal{H} is a connected graded cocommutative Hopf algebra of finite type and $P(\mathcal{H})$ is not free over a Lie generating subset, then there exists a $p \geq 1$ and two non-tree-like-equivalent p-variation rough paths with a common signature.

Proof idea

Take a homogeneous minimal generating set $(g_i)_{i\in I}$ of $\mathcal{P}(\mathcal{H})$ and look at $\mathfrak{L}^{\omega}(\mathbb{R}^I)$.

Proof idea

Take a homogeneous minimal generating set $(g_i)_{i \in I}$ of $\mathcal{P}(\mathcal{H})$ and look at $\mathfrak{L}^{\omega}(\mathbb{R}^I)$.

If $\mathcal{P}(\mathcal{H})$ is Lie-free, then there is a graded isomorphism $\phi: \mathfrak{L}^{\omega}(\mathbb{R}^{I}) \to \mathcal{P}(\mathcal{H})$ and the set of rough paths in both worlds are in bijection. Use Beodihardjo-Geng-Lyons-Yang.

Proof idea

Take a homogeneous minimal generating set $(g_i)_{i \in I}$ of $\mathcal{P}(\mathcal{H})$ and look at $\mathfrak{L}^{\omega}(\mathbb{R}^I)$.

If $\mathcal{P}(\mathcal{H})$ is Lie-free, then there is a graded isomorphism $\phi: \mathfrak{L}^{\omega}(\mathbb{R}^{I}) \to \mathcal{P}(\mathcal{H})$ and the set of rough paths in both worlds are in bijection. Use Beodihardjo-Geng-Lyons-Yang.

If $\mathcal{P}(\mathcal{H})$ is not Lie-free, then there is a graded surjective homomorphism $\psi: \mathfrak{L}^{\omega}(\mathbb{R}^{I}) \to \mathcal{P}(\mathcal{H})$ which is not injective. Construct an example of a rough path in $T^{\omega}(\mathbb{R}^{I})$ such that under the non-injective map ψ , we see the path, but not the signature.

Definition (Bellingeri-Friz-Paycha-P. 2021)

A $(\mathcal{H},\star,\Delta)$ -smooth rough path of order N is a map $\mathbf{X}: [0,T]^2 \to \hat{\mathcal{H}}$ with

1.
$$\mathbf{X}_{tt} = \mathfrak{e}$$
 and $\mathbf{X}_{st} = \mathbf{X}_{su} \star \mathbf{X}_{ut}$,

2.
$$\Delta \mathbf{X}_{st} = \mathbf{X}_{st} \otimes \mathbf{X}_{st}$$
,

3.
$$(s,t) \mapsto \mathbf{X}_{st}$$
 is smooth.

4.
$$\mathbf{X}_{tt} = \partial_s|_{s=t} \mathbf{X}_{st} \in \mathcal{P}_{\leq N}(\mathcal{H})$$

Remark

A smooth rough path of order N is a bounded N-variation rough path.

Definition

A genuinely smooth rough path of order N is a smooth rough path of order N such that there exists a minimal set of homogeneous Lie-generators $(g_i)_i \subset \mathcal{P}_{\leq N}(\mathcal{H})$ with

 $\dot{\mathbf{X}}_{tt} \in \operatorname{span}(g_i)_i$

for all $t \in [0, T]$.

Definition

A genuinely smooth rough path of order N is a smooth rough path of order N such that there exists a minimal set of homogeneous Lie-generators $(g_i)_i \subset \mathcal{P}_{\leq N}(\mathcal{H})$ with

 $\dot{\mathbf{X}}_{tt} \in \operatorname{span}(g_i)_i$

for all $t \in [0, T]$.

Conjecture

If \mathcal{H} is a cgccft Hopf algebra with non-Lie-free primitives, then there is an $N \in \mathbb{N}$ and two genuinely smooth rough paths of order N with the same signature while not being tree-like equivalent.

Picture from Diehl-Lyons-P.-Reizenstein, *Areas of areas generate the shuffle algebra*