MASTER’S THESIS

From Hopf algebras to rough paths and
regularity structures

Rosa Preif3

SUPERVISORS: Peter K. Friz AND Sylvie Paycha

TECHNISCHE UNIVERSITAT BERLIN

July 29, 2016



ii



Eidesstattliche Erklarung

Hiermit erklére ich, dass ich die vorliegende Arbeit selbststdndig und eigenhédndig sowie ohne
unerlaubte fremde Hilfe und ausschlieBlich unter Verwendung der aufgefithrten Quellen und
Hilfsmittel angefertigt habe.

Die selbststandige und eigenstédndige Anfertigung versichert an Eides statt:

Berlin, den

Unterschrift

iii



iv



Zusammenfassung in deutscher
Sprache

Im Mittelpunkt dieser Arbeit stehen die von Lyons entwickelten Rough Paths (wortlich 'raue
Pfade’), die einen algebraischen und analytischen Rahmen fiir Stieltjes Integrale, also Integrale
eines Pfades gegen einen anderen, bieten, in Fillen, in denen die betrachteten Pfade so rau sind,
dass das klassische Riemann-Stieltjes Integral nicht mehr konvergiert. Bevor wir Rough Paths
formal definieren kénnen, beginnen wir mit einer Einfithrung in einige algebraische Grundbegriffe.
Dazu gehoren zunéchst Algebren und Koalgebren, zwei Begriffe, die in einer gewissen Dualitats-
beziehung zueinander stehen. Als Kombination der beiden Begriffe erhalten wir Bialgebren, und
als Spezialfall dieser wiederum Hopf Algebren, die fiir diese Arbeit von zentraler Bedeutung sind.
Nachdem wir uns mit wichtigen Eigenschaften dieser Objekte vertraut gemacht haben, widmen
wir uns einer ausfiihrlichen Diskussion verschiedener Beispiele von Hopf Algebren. Dazu gehort
unter anderem die Hopf Algebra der Polynome, bei der das Produkt durch die iibliche Multip-
likation von Polynomen gegeben ist und sich das Koprodukt durch eine vertraute Binomialformel
ausdriicken ldsst. Anschliefend benutzen wir das Beispiel der Tensor Hopf Algebren zur Def-
inition von Weakly Geometric Rough Paths (wortlich ’schwach geometrische raue Pfade’), die
solchen Formen von Stieltjes Integralen entsprechen, welche die {ibliche Regel der partiellen Inte-
gration erfiillen. Fiir Fille wie die Ité-Integration, bei denen diese Regel nicht mehr anwendbar
ist, betrachten wir die von Gubinelli eingefiihrten Branched Rough Paths (wortlich 'verzweigte
raue Pfade’) und verwenden dazu das Beispiel der Hopf Algebren auf Rdumen von als Badume
und Walder bezeichneten Strukturen. Schliellich gehen wir noch auf einige Grundkonzepte der
von Hairer entwickelten Theorie der Regularitétsstrukturen ein, die uns einen weiteren Zugang
zu Weakly Geometric und Branched Rough Paths bietet. Dabei betrachten wir zuerst eine von
Hairer beschriebene allgemeine Methode, wie sich aus bestimmten Hopf Algebren eine Regular-
itdtsstruktur ableiten ldsst, um dann auf Basis einer formalen Picard Iteration eine Regularitét-
struktur zu entwickeln, welche besser zur Betrachtung sogenannter Rough Differential Equations
(wortlich 'raue Differentialgleichungen’) geeignet ist.
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Abstract

Lyon’s rough paths give an algebraic and analytic framework for Stieltjes integrals in a regime
of low regularity where the usual Riemann-Stieltjes integral does not converge. Before we may
rigorously define rough paths, we start with the introduction of some basic algebraic terminology.
Among them are algebras and coalgebras, two notions which are in some sense dual to each
other. As a combination of these notions we obtain bialgebras, and as a special case of them
then Hopf algebras, which play a central role in this thesis. After further algebraic preliminaries,
we give the examples of Hopf algebras we are interested in. Among them is the example of the
polynomial Hopf algebra, whose product is nothing but the usual multiplication of polynomials
and whose coproduct can be expressed very simply with the help of a binomial coefficient. We
then use the dual pair of tensor Hopf algebras to introduce weakly geometric rough paths, which
correspond to notions of Stieltjes integrals satisfying the usual integration by parts rule. For
cases like Ito-integration where we need to give up integration by parts, we look at Gubinelli’s
branched rough paths based on the dual pair of Hopf algebras on trees and forests. Finally, we
give some basic concepts of Hairer’s theory of regularity structures and use them for a different
approach to branched and weakly geometric rough paths. While we first look at a general method
described by Hairer to derive a regularity structure from certain Hopf algebras, we then develop
a regularity structure based on a formal Picard iteration which is more suitable for dealing with
rough differential equations.
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Chapter 1

Introduction

Consider a family (X%)¢_, of paths X; € C7([0,T],R), the space of Hoelder continuous functions
of exponent v > 1/2. By the integration theory of Young, introduced in the paper [You36], the
Riemann-Stieltjes integrals (Equation (4.1) [FH14])

t
XidX) = i XX — X)),
/s 7 dX; 'Pl'g”[u%p W(X) = X))

where the limit is taken over partitions P of [s, t], are well defined (cf. Section 3.3.2 [LQ02]). We
may even compute iterated integrals of the type (Equation (1.3) [HK14])

t 1
Roslen i) im / / dXit . dXin,

where n € N, 41,...4, € {1,...,d}. The set of all these words is denoted by W,;. Together with
later research, most notably by Chen (see e.g. [Che71]), it turns out that these iterated integrals
fulfill the following algebraic and analytic conditions (Based on Definition 1.2. [HK14]):

A A~

1. X5 (1) =1 and Xst(wl W wg) = Xst(wl)Xst(wg) for all words wi,ws € Wy,
2. Xy = & and Xop(w) = (Xou © Xut) Agw = 30, X (w0!) Xy (w?) for all words w € Wy,

3. sup,, ‘lisst‘(fm < oo for all words w € Wy,

where LW is the shuffle product and Ay is the deconcatenation coproduct on the real vector space
(Wy). The object ((Wy), W, Ay) forms a bialgebra. More precisely, it is a special kind of a
bialgebra called a Hopf algebra.

The crucial point, though, is that we assumed a Holder exponent v > 1/2. Once we have paths
of lower Hoélder regularity, all of the above breaks down. Our iterated integrals aren’t defined
any more. This is where rough paths come into play. Now that we have v € (0,1/2], the idea is
to take the above three conditions as a definition, and to say that if a map X : [0,T]2 — (Wy)*
obeys all of them, then we call it a weakly geometric rough path.

This is however not the last generalization we want to make. Condition 1. from above encodes
nothing but the integration by parts rule applied to iterated integrals. Since we also want to
cover theories of integration like Ité-integration which do not satisfy integration by parts, we
later give another collection of conditions based on a different Hopf algebra. This leads to the

1



2 CHAPTER 1. INTRODUCTION

concept of branched rough paths, which was introduced by Gubinelli in the paper [Gub10]. Rough
paths as such however were originally developed by Lyons in the papers [Lyo94], [Lyo95] and
[Lyo98].

Before we can rigorously introduce rough paths, there are a lot of algebraic concepts to
understand. In Chapter 2, we do so in mainly following the notes [Man06], but also repeatedly
refer to the book [Abe8()]. The standard reference for the following topics is the book [Swe69]. We
start by defining algebras and coalgebras, two notions which are in some sense dual to each other.
With certain compatibility requirements, they can be combined to the notion of a bialgebra. For
some bialgebras, there is a certain algebra and coalgebra antimorphism called the antipode, which
is characterized by a property involving the so-called convolution product algebra given by the
product and coproduct. Bialgebras with an antipode are called Hopf algebras. We introduce
gradings which make it possible for us to even better understand the structure of the examples of
Hopf algebras we are interested in even better. Finally, we formally describe the duality relation
already mentioned, but also learn about duality between Hopf algebras as a whole, which was
presented in almost the same way in [Che71].

Chapter :3: then presents these examples of Hopf algebras. First, we look at the polynomial
Hopf algebra with the usual product of polynomials and a coproduct which is easy to express
through a multi dimensional binomial coefficient. A dual Hopf algebra can be described as the
algebra of differential operators with composition product, but it turns out to be isomorphic to
the polynomial one. Referring to the presentations of the book [Reu93], the paper [HK14] and
again [Man06], we then look at the tensor algebra whose coproduct is nothing but the dual of
the shuffle product mentioned above.

Afterwards, we take a short look at the technicalities of formal series and truncations, and
furthermore state some well-known basics about Lie algebras. Also, we introduce the exponential
map, which maps a Lie algebra to its Lie group, and its inverse, the logarithm. The exponential
map then plays an important role for us by relating primitive and group-like elements in the
case of a connected graded Hopf algebras, as explained in [HK14] and for the special case of the
tensor algebra in [Reu93].

As our last example, we look at the Connes-Kreimer Hopf algebra of trees and forests, mainly
based on [HK14] and the original paper [CK98]. After introducing all the objects fully recursively,
we give representation formulas which formalize the notion of admissible cuts already introduced
in [CK98] without relying on interpreting trees as graphs. These formulas make it easy to
introduce the dual Hopf algebra whose product is the Grossman-Larson product, the dual of the
Connes-Kreimer coproduct.

In Chapter 4; we finally get to learn more about weakly geometric and branched rough
paths. In both cases, we look at the equivalence of four different kinds of definitions. For that
equivalence, the extension theorems of Lyons, which we took from the book [LCLOT], and of
Gubinelli, found in [Gubl0], play a crucial role. Citing the result from [HK14], we will see that
weakly geometric rough paths are indeed included in the concept of branched rough paths.

The final Chapter ©: then gives an introduction to some concepts from Hairer’s theory of
regularity structures which was originally presented in its full scope in the paper [Hail4d]. Exactly
as described in [Hail4], we look at how a regularity structure can be derived from a connected
graded Hopf algebra, and we relate rough paths to models for the regularity structure obtained
from the respective Hopf algebra. The last section then generalizes a different approach to
regularity structures for rough paths which [FHI14] shortly looked at for the simplest non-trivial
case. It is motivated by a formal Picard iteration, which is a standard method of solving partial
differential equations, which we here use for the problem of a rough differential equation.



Chapter 2

Basic definitions and results

For some vector space V' over some field K, we denote by V* its algebraic dual space, i.e. the
vector space of all linear maps V — K. If V is equipped with a topology, we write V' for its
topological dual space, i.e. the vector space of all continuous linear maps V — K.

Definition 2.1. (Section I.1. [Man06]) Let V1, V5 be two vector spaces over the same field K. A
tensor product V1 ® Vs is a K vector space for which there is a bilinear map ¢ : Vi x Vo = Vi@V,
with the property that for every K vector space W and every bilinear map p : Vi x Vo — W,
there is a unique linear map m, : V; ® Vo — W such that

=1m, o L. 2.1
P o

We write v1 @ vy := t(v1,v2) for all v; € V4, vy € V5. With that notation, Equation (21) can
be formulated as
P(Ul,vz) = mp(vl ®v2) Yo, € Vi, vp € V5.

It turns out that for every pair of vector spaces V1, V5 over the same field, there exists a tensor
product V; ® V3, and that the tensor product is unique up to linear isomorphisms (Proposition
I.1.1. [Man06]). For the proof of existence, one needs the axiom of choice. See the proof of
Proposition I.1.1. [Man06] for both existence and uniqueness.

What is very important for us is that for every element x € Vi ® V5, there is n € N and
vi, .. v € Vi, vd, ... vl € Va such that

n n

x = ZL(’U%,’U;) = Zvi ® V.

i=1 i=1

For this fact, also see the proof of Proposition I.1.1. [Man06]. Note that such a representation
is of course not unique. Also note that in the literature, one may sometimes find notions of
completed tensor products, especially when the vector spaces are endowed with topologies, and
for these objects, this fact does not hold true.

Due to the uniqueness of the tensor product up to isomorphisms, we may identify (V1 @V2)®V;
with V1 ® (Vo ® V3), and therefore simply write V; ® Vo ® V3 (Section I.1. [Man06]).

2.1 Algebras and coalgebras

Definition 2.2. (Section I.2.1. [Man06]) A vector space A together with an associative bilinear
map ¢ : A X A — A is called an algebra. A subspace S C A is called subalgebra if S¢S C S
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and two-sided ideal if So A+ Ao S C S holds. (A,¢) is unital if there is a unit element 1 € A
such that 1¢a=a¢1 =a for all a € A. The function u: K — A, t — t1, where K is the field
under A, is called unit map.

If an algebra (A, o) is given, we denote by m,: A® A — A the linear map generated by
m,(a; ® ag) := a; ¢ ag. Using this notation, associativity reads

m,(id ® m,) = m,(m, ® id) (2.2)
and the unit map is characterized by
m,(id ® u) = m,(u®id) = id, (2.3)
where we use the identification A = A® K = K ® A implying id @ u,u®id € L(4,A® A).

Definition 2.3. (Chapter 1 Section 2.1 [Abe80]5:1:9 An algebra homomorphism between two al-
gebras (Ay, ), (Az2,#) is a linear map A : A; — A such that Am, = m,(4A ® A).

Definition 2.4. (Section I.3.1. [Man06]) Let C' be a vector space together with a linear map
A:C—=C®C. If Ais coassociative, i.e.

(A ®id)A = (id @ A)A, (2.4)

we call (C,A) a coalgebra and A a coproduct. A subspace S C C' is called two-sided coideal if
ASC S®C+C®S and subcoalgebra if AS C S® S. The coalgebra (C, A) is counital if there
is € € C"* such that

(e®id)A = (ld®e)A =1id, (2.5)
a so-called counit. (C,A) is cocommutative if 7TA = A, where 7 : C® C — C ® C is the flip
linearly generated by 7(a ® b) :=b® a.

Remark 2.5. While every ideal of an algebra is a subalgebra but generally not every subalgebra
is an ideal, every subcoalgebra is a coideal but generally not every coideal is a subcoalgebra.

We sometimes write

ch ® ¢y := Ac
(¢)

and for arbitrary linear L : C'® C' — V then 3 L(c1 ® ¢z) := LAc. This concept is

called Sweedler’s notation (Section 1.3.1. [Man06]). In Sweedler’s notation, coassociativity reads
(section 1.3.1. [Man06])

ZZCI:I ®cr2 ®@ex = ZZQ ® c2.1 @ C2:2. (2.6)

(c) (e1) () (e2)

Definition 2.6. (Chapter 2 Section 1.1 [Abe80}%) A coalgebra homomorphism between two
coalgebras (C1,Aq), (C2,Ag) is a linear map A : C7; — Cy such that (A ® A)A; = AqA.

'In [Abe80], the unit property is included in the definition of an algebra, and thus also the definition of an
algebra homomorphism, which is simply called an algebra morphism there, contains the condition that the unit
of one algebra is mapped to the unit of the other algebra.

2As with the definition of an algebra, the definition of a coalgebra in [Abe80] already includes the counit
property and thus also the definiton of a coalgebra morphism there includes an additional condition concerning
the counits.
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If we have an algebra (A, ¢) and a coalgebra (C, A), the convolution product x (Section 1.4.
[Man06]) on the space of linear maps L(C, A) is defined by

SxT:=m,(S®T)A. (2.7)
(L(C, A), %) forms an algebra, as
Sx(T*V)=m,(S® m.(T®V)A))A

=m,(idom,)(S®T®V)(id®A)A =m,(m, ®id)(S®T o V)(A®id)A
=m,(m.(S®T)A)@V)A = (S*T)*V,

where we used associativity of ¢ and coassociativity of A (based on Section I.4. [Man06]). If
(A, o) is unitary with unit map u and (C,A) is counitary with counit e, then (L(C,A), ) is
unitary with unit element ue (based on Section I.5. [Man06]) as

Txue=m,(T@®ue)A =m,(ideu)T{id®e)A=T (2.8)
and analogously ue x T =T.

Definition 2.7. (Section 1.3.2. [Man06]) Let (C, A) be a coalgebra over the field K. Then, a
right comodule is a K vector space C' together with a map A : C' — C ® C such that

(A ®id)A = (id ® A)A.

2.2 Bialgebras and Hopf algebras

For an algebra (A, o) we introduce another algebra (A ® A, o) where the product is bilinearly
generated by (Section 1.2.2. [Man06])

(a1 ® a2) ¢ (a3 ® aq) := (a1 ¢ a3z) ® (az ¢ aq). (2.9)
The corresponding linear map is given by (Section 1.2.2. [Man06])

m,=(m, ®m,) (id® 7 ®id).
- 5/_/
=:T1324
Definition 2.8. (Section 1.5. [Man(06], Chapter 2 Section 1.1 [Abe80]) Let (B, <) be an algebra
over the field K with unit element 1 = u(1) and (B, A) a coalgebra with counit e. If furthermore
the compatibility requirements

1. Am, = (m, @ m,)(ld® 7 ®id)(A ® A) (A is an algebra homomorphism from (B, o) to
(B ® B,9) and o is a coalgebra homomorphism from (B ® B, T1324(A ® A)) to (B, A)),

2. Au=u®u (uis a coalgebra homomorphism from (K,idg) to (B, A)),
3. em,=e®e (e is an algebra homomorphism from (B, ¢) to (K,-)),

hold, we call (B,o,A) a bialgebra. For bialgebras (B, #1, A1) with unit map u; and counit e,
(B2, %2, Ay) with unit map u; and counit &, we call A: By — Bs a bialgebra homomorphism if
A is both an algebra homomorphism and a coalgebra homomorphism and fulfills the additional
properties Au; = ug and eo A = €7.
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Remark 2.9. Applied to elements of B, the compatibility requirements read
1. A(by 0 by) = Aby 0 Aby Vby,by € B,
2. A1=1®1,
3. g(by o bg) =e(by)e(ba) Vby,by € B.
Remark 2.10. In a bialgebra, we always have €(1) = 1, as the counit property (25) implies
1=(d®e)Al=(id®e)(1®1) = (1)1

Thus, eu = idx and therefore € = cue.

We introduce the following simple lemma to avoid having to show this separately in each of
the examples of Hopf algebras we later want to look at.

Lemma 2.11. Let (A, ) be an algebra and A : A — A® A an algebra homomorphism. Assume
that
(A® id)Av =(id® A)Av (2.10)

furthermore e € A* is an algebm homomorphzsm and

(e®id)Av = (id ®e)Av=v (2.11)

Proof. Let S denote the subalgebra generated by M. As A is an algebra homomorphism, we

have for all v, w in S that
Avow) ZZvlow1 (vg o wa)
) (w)

(A ®id)A(v o w) ZZZZ V11 O W1i1) (v1;2°w1;2)®(v2°w2)

(@) (v1) (w) (w1)

- Z Z Z Z<v1 ¢ wl?l) ® (U2:1 owr2) ® (Ug:g o w2>

() (v2) (w) (w1)

=220 D (mrown) & (van 0 wan) ® (va 0 wi2)
(v) (v2) (w) (w2)
=(id® A)A(v ow).

morphism, coassomatlwty indeed inductively extends from M to the whole of S.
If also € is an algebra morphism, the counit property given for some v, w € S implies

(e ®@id)A(v o w) ZZ g(v1 o wy)(vg o we) ZZ(E(vl)vg) o (e(wy)ws)

(v) (w) (v) (w)

= <Zg(v1)1}2) o (Zs(wl)wg) =vow.

(v) (w)

Analogously, we get (id®e)A(vow) = vow. Hence, also the counit property inductively extends
from M to S.
O
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For a bialgebra (B, ¢, A) with unit element 1, let
Y Weh:=Ah=Ah-10h-h®1
(h)

denote the reduced coproduct of h (Proof of Proposition II.1.1. [Man(6], Section 2.2 [HK14]).
Lemma 2.12. (Part of Proposition I1.1.1. [Man06]) (B, A) is a coalgebra.

Proof. (Part of the proof of Proposition II.1.1. [Man06]) As A maps B linearly to B® B, the same
is true for A. Thus, according to Definition 22.4; the only thing left to show is coassociativity.

Au=—u®u. (2.12)
Therefore, we compute

iz

(A®id)A = (A®id)(A —u®id—id® uf A ®id)A+u®ueid— A®u
=(A®id)A+u@ueid+u®id®u+ideueu-—A®@u— (ldoueid)A —u® A
Cﬁb(id@A)A+u®u®id+u®id®u+id®u®u—A®u—(id®u®id)A—u®A
( Car)

id® A)A +id@u®u—ue A id® A)A.

O

Having shown that A s a coproduct, we may introduce the convolution product algebra
(L(B, B), *) by 3
ST :=m,(S®T)A. (2.13)

Definition 2.13. (Section I.5. [Man06]) A bialgebra (H,<,A) with unit map u and counit &
together with an antipode, i.e. a linear operator S : H — H fulfilling the antipode property
m, (S ®id)A = m,(id ® S)A = ue (2.14)
=e()1
is called a Hopf algebra.

Although [Abe80] gives the definition of a Hopf algebra homomorphism (morphism in the
language used there), the following simple fact we came across is not mentioned, but it is for
example stated as Exercise 9. of Section IIL.8 [Kas95]. The idea for the proof came from a similar
argumentation in the proof of Proposition 1.7.1. [Man06].

Theorem 2.14. Let (Hy,0,A1,51) and (Ha,#,A3,S3) be Hopf algebras and A : Hy — Hs be a
bialgebra homomorphism. Then,
AS; = S A.

Therefore, we call A a Hopf algebra homomorphism (Chapter 2 Section 1.2 [Abe80)).

Proof. Consider the algebra (L(H;, Hs), *) defined by S+ T := m,(S ® T)A; with unit use; (see
(27) and (28)), where u; is the unit map and ¢; is the counit of H;. We have

AS) x A =m,(AS; @ M)A =m, (AR A)(S1 ®1d)A; = Am,(S; ® id)A; = Auje; = ugey
= g0/l = m,(id ® S3)AxA = m,(id ® S2)(A® A)A; = m, (AR SaA)A; = A xSz A
and therefore
AS) = AS; xuge; = ASy x (A x SoA) = (ASy * A) % SoA = ugeq * Sold = SaA. (2.15)
O
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Corollary 2.15. (Section 2.1 [HK14]) If there is an antipode for a given bialgebra, then it is
unique.

Proof. If for a bialgebra (B1,¢,A), there are antipodes S; and Sa, then both (Bj,¢,A,S;) and

homomorphism id. O

Theorem 2.16. (Proposition 4.0.1. [Swe69], Theorem IT1.3.4. [Kas95], Proposition 1.7.1. [Man06])
Let (H,o,A,S) be a Hopf algebra with unit element 1, unit map u and counit €. The antipode
S is

(i) an algebra antimorphism, i.e.
Sm, = m, (S ® S)7, (2.16)

where T denotes the flip, resp.
S(h1 Ohg) = Shy o Shy thhg € H.
Furthermore, Su = u, resp. S1 = 1.

(i) a coalgebra antimorphism, i.e.
AS = #(S® S)A. (2.17)

Furthermore, €S = €.

Proof. (Based on the proofs of Proposition 4.0.1. [Swe69], of Theorem II1.3.4. [Kas95] and of
Proposition I.7.1. and Lemma 1.7.2. [Man06]) First of all, using associativity (2.2), we have

m,(m, ® m,) = m,(m, ®id)(id ® id ® m,) = m,(id ® m,)(id ® id ® m,)

2.18
=m,(id ® m,)(id ® m, ® id). (2.18)

Likewise, using coassociativity (2.4),
(ARA)A =([d@id® A)(A®id)A = (id®id ® A)(id ® A)A (2.19)

= (id® A®id)(id ® A)A.

Put A := (id® 7 ®id)(A® A). Furthermore, for any permutation (i1 . ..iy), let 7, ;. : H®" —
H®™ be the linear map generated by (Section I.1. [Man06])

Tiroin (hiy @ - @) = h1 @+ ® hy.
(i) Consider the algebra (L(H ® H, H), *) defined by S*T := m,(S ® T)A with unit u(e ® ¢).

m, *m, (S ®S)F =m,(m, ® m, (S ®S)7)A = m,(m, ® m,(S ® S)7)F1423(A @ A)

@18

=m,(id ®m,)(id®m, ®id)(id®id® S ® §)T1342(A ® A)
=m,(id @ m,)7132(1d ®id@m,)(Id®S®id® S)(A® A)
)/\
(

@14y

:mo(1d®mo 7'132(1d®8®u€)(A®1d)
Q.r“'.i??]rno(id RS)(A® E)@';ZL':)H{-: ®Re=ule®e).

On the other hand, using the antipode property as well as the first and third compatibility

Sm, *+m, = m,(Sm, ®m,)A = m, (S ®id)(m, ®m,)A = m,(S ®id)Am, = uem, = u(e ®e).
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property we also have

1=uel =m,(S®id)Al =S8161=S51.

(ii) Counsider the algebra (L(H, H ® H), %) defined by S+ T := m,(S ® T)A with unit (u®u)e.

Ax#(S®S)A =m (A ®+S ®S)A)A = (m, ®m,)H324(A ® F(S ® S)A)A
U, @ m,)f1302(d ©1d © S © 8)(id © A @ id)(id © A)A
(m, @m,)(id® S ®id ® S)(id ® id ® A)i32(id ® A)A
“im, ®id)(id ® S @ ue)f32(id ® A)A
@'.'::5‘5(1(110 ®@u)(id® S)Ac'é;ti@us ®@u=(u®u)e.

On the other hand, using the antipode property as well as the first and second compatibility

property we also have

e=cue=em,(SRIAA=(e®e)(S®id)A =S(id ® e)A =&S.

2.3 Gradings

Definition 2.17. (Chapter 1 Section 2.2 and Chapter 2 Section 4.1 [Abe80], Section IIL.1.
[Man06])Let G;, i € Ny be vector spaces over the same field and put G := @;‘ﬁo G;. Then,

(i) an algebra (G, <) is graded if
Gnon an—i—m vn7mEN0a
(ii) a coalgebra (G, A) is graded if

AGn g @ Gm & Gn—m Vn e NOv

m<n
(iii) a bialgebra (G,¢,A) is graded if both (G, ¢) and (G, A) are graded,
(iv) a Hopf algebra (G, ¢, A,S) is graded if (G, o,A) is graded and

SG, C G, Vn € Ny.
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The family (G;);en, is called grading of G. The algebra, coalgebra, bialgebra or Hopf algebra is
connected graded if additionally dim Gy = 1.

If (Gy)ien, is a grading, the family (G%);en,, G* := 69;:0 G, is a so-called filtration (Chapter
1 Section 2.2 and Chapter 2 Section 4.1 [Abe80], Section II1.2. [Man06]).

Theorem 2.18. (Proposition II.1.1. [Man06]) In a connected graded bialgebra (B, o, A) graded
by (B;); we have kere = @;- | B; and

AB,C P Bn®B, mVneN. (2.20)

o<m<n

Proof. (Proof of Proposition II1.1.1. [Man06]) Let K be the field under B. Let n € Nand = € B,

r=(id®e)Ar =c(y)l + z + (ild ® e)w.

Due to linear independence of z —x € By, (y)1 € By and (ild®¢e)w € P, _,,«,, Bm this implies
x =12z ¢(y) =0and (id®e)w = 0. Again applying the counit property, we get, using what we
just found out,

r=(e®id)Azr =¢(z)1 +y + (e ® id)w.

As before, linear independence of y — 2 € B,,, e(z)1 € By and (¢ ® id)w € B,_,,,, Bm implies
x =1y, e(xr) =0 and (¢ ® id)w = 0. Hence, we conclude

Ar=1z+x21+w,

arbitrary, this implies (2.20) and, together with £(1) = 1, also kere = @, B O

Ab =1®b1+b1®1 Vb € By.

The following theorem will be very important for some of our examples of Hopf algebraslater.
We chose a different approach for the proof than the one given in [Man06]. For a function
f: M — Nand M’ C M, let f|y denote the restriction of f to M’.

Theorem 2.20. (Corollary 11.3.2. [Man06]) Any connected graded bialgebra (H,o,A) over the
field K is a connected graded Hopf algebra with the antipode given by the recursion

Sh=-h-m(d®8)Ah=—h—> hoSh" ¥Yhekere, Skl=kl YkeK, (221)
(h)

or equivalently

Sh=-h-m(S®id)Ah=~h-Y SWoh" Vhekere, Skl=kl VkeK. (2.22)
(h)
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Proof.  Let (H;); be the grading of H, (H"); the filtration and define the family (H?);en by
A =@ H,

implies AH™*! C H™ @ H™, the operator

Slgn+1 := —id[gn+1 — m,(id ® STgn ) Al gn+1

Hy = span{1} and hence &1 [g, = Salm, by definition. Assume

Silun = Salpn (2.23)
for some n € Ny. Then,
- ©) /. 1 x . e
(d * S)l gnsr = (d * S2) [ gnsr = —(id % id) [ gos+r — (d * Sz % id)[ o
©) ©)

(id % id)] gosr — (id % Sy #id) [ gusr = (Sy #1d) [ guss = (S2 #1d) [ gt

the equalities labeled (). We conclude 8;[gn+1 = Sl pn+1.

3. Both recursions yield the antipode. Now, let S := §; = S; be the operator given by each
of the recursions. For h € ker ¢, we have

m.(S @ id)Ah = m.(S ®id)Ah + m,(S®id)(1 @ h+h© 1) = m.(S ®id)Ah + h + SK=T

we get
m,(S®id)Al =m,(S1®1) =1 =m,(id ® S)Al,

just as ue(1) = 1. By linearity, the antipode property is fulfilled on the whole of H.

Finally, we show by yet another induction that S preserves the grading. First of all, we obviously

~ :2.20;
0, © S)AH, C (A S) @) Hy®Hyop S, @ Ho® Hyo € H,

o<m<n o<m<n

since (H, ¢, A) was assumed to be a graded bialgebra.
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2.4 Pairs of dual vector spaces

Definition 2.21. (Chapter I Section 3. [RR64], Chapter 2 Section 2.1 [Abe80]) Let V,V be
two vector spaces over the same field K and (-,-): V x V — K bilinear such that

L (0,0)=0Y8eV = v=0,
2. (1,B) =0YveV = §=0.
Then, we call (V,V) a pair of dual vector spaces and (-,-) its duality pairing.
Lemma 2.22. (Chapter IT Section 5. [RR64]) Let (V, V) be a pair of dual vector spaces and V

finite dimensional. Then, dimV = dim V' and for each basis (b;); of V' there is a dual basis (b;);
Of V, i.e. <bi,bj> = (Si,j.

Proof. (Based on Chapter IT Section 5. [RR64]) For each o € V let «(¢) := (-, %) € V’. Obviously,
¢ is linear. If © # 0, then there is v € V' such that (v,9) # 0 as (-,-) is a duality pairing. Hence
1(D) # 0, i.e. ¢ is injective. Therefore dim V < dim V'’ = dim V. Thus V is also finite dimensional
and by the same argument as before we get dimV < dim V' = dim V. As ¢: V — V' is injective
and dim V = dim V' we have that ¢ is bijective. Let now (b;); be a basis of V and define x; € V'
by Hi(bj) = 51‘73‘. Then (Lil(lﬂ))i is a dual basis of (b7>, O

Theorem 2.23. Fori € {1,2}, let (-,-); be a duality pairing of a K-vector space V; with another
K -vector space V;, where K is a field of characteristic zero. Then, (V1 ® Vo, V1 ® Va) is a pair of
dual vector spaces with the induced duality pairing

<Zv{®v§72f1i®®é> ;:ZZ@{,@M@;,@Q)Q. (2.24)
j=1 =1 j

Proof.

1. The map (-,-) is well-defined and bilinear. Let m; : V; ® V; — K be the linear maps
corresponding to (-,-),. Put m := (m; ® mo)(id ® 7 ® id). Then, (-, ) :=m(-®-) yields

2. The map {-,-) is a duality pairing. Let 0 # u = Z;"‘:l uw] @ ul € Vi ® Va be arbitrary.
Without loss of generality, we may assume that

dim span(u))1<j<m = dimspan(u})1<j<m = m,
because otherwise the number of summands may be reduced. Put W; := span(u{)lgjgm,
W= {0 € Vi|{w,d); = 0Yw € W;}
and F; := ‘N/Z/WZJ- For & € V; let [0] € F; denote its equivalence class. Hence, for 9,7’ € Vi,
[7] =[] <= (w,0); = (w,?'); Vw € W,.

This means that (w, [7])} := (w, 0); is well-defined. (w, [0]); = 0 for all w € W; implies by
definition [0] = [0] = 0. Also, (w, [7]); = 0 for all [#] € F; means by definition (w,?); = 0
for all o € V; and therefore w = 0 because (V;,V;) is a pair of dual vector spaces. Hence,

(W;, F;) is a pair of dual vector spaces and since W; is finite dimensional, we may use

80 = (uf, [@]); = (uf, ).
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Put @:= 77", w} ® ul. Then,

m
<uvﬂ> = <uj1’al1>1<uj27al2>2 :m7£0
Ji)l=1

implication :2: of the definition is then completely analogous.
O

Definition 2.24. Let (V;,V;), i € {1,2} be pairs of dual vector spaces with duality pairings
w; = (-,-);. We then say that a linear map S : Vi — V5 is the dual operator of a linear map

St Vh o Vit ]
(Sv, D)9 = (v, S0)1
for all v € V4 and © € V. We write S %2 S, or shortly S 1| S if the involved duality pairings are
clear from the context: -
Lemma 2.25. Let (V;,V;) and (W;, WJ) be pairs of dual vector spaces over the same field K.
(i) If both Sy : Vi — V5 and Sy : Vi — Vi are dual operators of S: Vo — Vi, then Sy = So.

(ii) If K is of characteristic zero, A : Vi — Vo is the dual operator of A:Vy - Vi and
B : Wy — Wy is the dual operator of B : W — Wi, then A® B is the dual operator of
A ® B under the induced duality pairing.

(iii) If F': Vi = Va is the dual operator of F: Vo — YL and G : Vo — V3 is the dual operator
of G : V3 = Vs, then GF is the dual operator of FG.

Proof. Let (-,-), be the duality pairing of (V;, V;) and (-, )wj the duality pairing of (W}, Wj).

(i) (S1v, )y, = (v,58)y, = (Sav, D)y, for all v € V1, © € V3 implies ((S1 — S2)v,0),, = 0 for

(i) Let (-,-),,,, be the induced duality pairing of (V; ® W;, V; ® W;). Under the given as-

sumption,

(A® B)(v1 @ w1), T2 @ W2)yyus = (A1, T2)y, (Bw1, W), = (v1, Ala)y, (w1, Bida)y,
= <'U1 ® wy, (‘Zl ® B)(ﬁQ ® w2)>u1w1

for all vy € Vi, wy € W1, 09 € ‘72, Wo € Wg. The implication follows via bilinearity.
(iii) Under the given assumption,
<G.Fl]17 173>3 = <F’Ul, G’173>2 = <’l}1, Féf}3>1

for all v; € V4 and 05 € V.

3This notation is nonstandard and just used for the purpose of this thesis.



14 CHAPTER 2. BASIC DEFINITIONS AND RESULTS

Theorem 2.26. (Equations (3.4.1) to (3.4.5) and Section 3.5 [Che71], also based on Chapter 2
Sections 2 and 3 [Abe80], Proposition 1.3.1. [Man06]) Let (V,V) be a pair of dual vector spaces
over the field K of characteristic zero.

1 IfA,: V- V@V is the dual operator of m, : VeV =V, then (V,A,) is a coalgebra
iff (V, o) is a algebra. In that case, we say that (V,A,) is the dual coalgebra of (V,¢) and
(V, o) is the dual algebra of (V,A,).

2. If (V,0) is the dual algebra of (V,A,) and u: K — V is the dual operator of e : V — K,
then u is a unit map iff € is a counit.

3. If (V, ) is the dual unital algebra of (‘N/,~A°) and (V,A,) is the dual counital coalgebra of
(V,e), then (V,0,A,) is a bialgebra iff (V,,A,) is a bialgebra. In that case, we say that
(V,0,A,) is the dual bialgebra of (V,e,A,) and vice versa.

4. If (V,9,A,) is the dual bialgebra of (V,e, A,) and S} : 'V — V is the dual map of S : vV —
V, then (V,0,A,,S;) is a Hopf algebra iff (V, o, A,,S) is a Hopf algebra. In that case, we
say that (V,0,A,,S;) is the dual Hopf algebra of (V,e,A,,S;) and vice versa.

Proof.

Am, 1L Am, and (m,®m,)(id®7®id)(A, ® A,) 1 (m, ®m,)(id® 7 ®id)(A, @ A,)

as well as
Au, flem, and u,®u fle ®e,

as well as
em, L Au, and e, ®e, N u @ u.

.....

m,(id ® S)A, 1 m,(id ® S)A,, m,(S; ®id)A, 1§ m,(S; ®id)A, and u.e, Y we,.

property of S; are equivalent.

O



Chapter 3

Connected graded Hopf algebras

3.1 Polynomials and differential operators

Definition 3.1. For the set N¢ = {n = (ny,...,n4)|n; € NgV1 < i < d} of d-dimensional multi
indices we define

(i) the partial order n < m <= n; < m;Vi with the shorthand notation n < m <=
n<m A n#m,

(ii) the absolute value |n| := Zle ng,
(iii) the sum + : Ng x N¢ — N¢, n +m := (ny +ma,...,nqg +myg),
(iv) the difference n —m := (ny — mq,...,ng — mg) for m <n,
(v) the factorial -!: N¢ — N, n! := H?:l n; !,
!

(vi) the binomial coefficient () := (n#),m, for m < n.

By (e%)1<i<a C N& we denote the family of multi indices given by ej» = 0; 5.

3.1.1 Overview

In this section, we want to introduce the following two structures and show that they are Hopf
algebras:

Py = span{X", n € NI} = R[Xy,...,X,]
O:PdX'Pd—)'Pd, X" o XM = Xntm

u: R— Py, u(r) = rXx°
Ay: Py = Pg@Py, AX"= Z <n) XM @ XnTm
m
0<m<n

1 ifn=
e: Pq— R, e(X™) = itn=0

0 else
82 Pg— Py, SoX" = (—-1)"X"

15
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Dy = span{D", n € N&}
0:DyxDy—Dy DloD™ = ("+m)D"+m
m
u: R— Dy, u(r) = rD°
A,: Dy > D;eDy, AD" = Z D™ D™
0<m<n
1 ifn=0
e: Dy — R, ey =4 "
0 else
S; : ]D)d — ]D)d, S;Dn = (71)”’Dn

3.1.2 Polynomial algebra

The content of this subsection is standard knowledge and belongs to the folklore of the theory
of graded Hopf algebras.

The polynomial algebra is defined as the real vector space P, := span{X", n € N¢} together
with the bilinear product e generated by X"X™ := X" ¢ X™ := X"*™  Put 1 := X° and
X; := X¢. Our goal is to extend (P4, e) to a connected graded Hopf algebra. Intuitively, we
choose the grade of some monomial X™ to be equal to its polynomial degree |n|. This grading
yields the decomposition Py = €D,,cyy Pa,n, where Py, := span{X™, m € N§ : |m| = n}. Hence,
Pan ®Pam C Pintm and dim Py = 1, which means that (Py, ®) is a connected graded algebra

.....

axt= JI @axgm= ¥ (P)xmext vneny (3.1)

i€{1,...,d} 0<m<n

where again (z @ v) ¢ (y @ w) := (z e y) ® (v e w). The coproduct on the whole of P, is then
generated by linearity.

Remark 3.2. As we just showed there is only one candidate for a coproduct which may extend
(P4, ®) to a bialgebra under the predefined grading (Pgn)n-

Lemma 3.3. (Pg,e,A,) is a connected graded bialgebra.

Proof. (P4, e) is an unital algebra as e is obviously associative and by definition bilinear with
unit 1. Likewise, A, is linear by definition. Its linearity, the bilinearity of e and the first equality

already follows generally from the special cases

([dRANAX;, =1AX; +X;0A,1=101X;,+10X;91+X;®1®1
=A1X;,+AX; ®1= (A, ®id)AX;.

Thus, (Pg4,A,) is a coalgebra. The fact that ¢ € Py* : e(P) = P(0) is a counit is obvious from
the expansion in (31) The validity of the compatibility requirements for the counit and the unit
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element, namely A1 =1® 1 and e(P)e(Q) = P(0)Q(0) = (PQ)(0) = e(PQ) for all P,Q € Py

..........

Pd,n L4 Pd,m c ,Pd,n—&-m and
A, Pgn C @ Pam ® Pa

mtl=n

given by the recursion

S;P=-P-m,(id®S))A,P=-P—-> P'eS:P" VPckere, S1=1. (3.2)
(P)

Knowing that an antipode exists, we may deduce its form without performing the recursion,

Indeed, we just need to compute

0=ue(X;) =m,(i[d®SHAX; =m,(1ld®S)1®X; +X;®1) =1 5X,; + X; ¢ 571
= 8:Xi + X,

concluding §:X; = =X, for all ¢ € {1,...,d}, and the fact that S¢ is a e antimorphism, and thus
a homomorphism since e is commutative, already implies that

SIXM = SIXT™ e e X5) = (S7X1)T e (SIKg)* = (<X))* e e (~Xg)*™
= (~pixn

.......

thus have the following.
Theorem 3.4. (Py,e,A,,8?) is a connected graded Hopf algebra.

3.1.3 Algebra of differential operators

Now, we consider the space of differential operators D4 := span{d", n € N&} over the field R.
Our treatment of the corresponding Hopf algebra is based on Section 2.1 [Bro04] and on Example
2.2 [HK14], and also on some standard facts.

The tuple (Pg,Dy) is a pair of dual vector spaces via the duality pairing (Remark 4.19 [Hail4])

(0", p) :=(9"p)(0), p € Py (3.3)

The dual basis of {X", n € N} is then given by {D", n € N¢}, where D" := 1;,0". Indeed, we
have

(D", X™) = %(anxm)(o) =0nm  Yn,m e Ng.

Analogous to the case of the polynomials, we introduce the intuitive grading leading to the
decomposition Dy = P, Dy, (n) into subspaces Dy () := span{D™, m € Ng : |m| =n} as well
as a bilinear product, the composition o, via 979 := 9" o 9™ := "™, Obviously, there is an
isomorphism tp,p, : (Pg,®) = (Dg, o) such that vp,p,(X"™) = 0", i.e. the grading is preserved by
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isomorphic to A, and 8¢ in order to extend (Dg4, o) to a connected graded Hopf algebra, meaning
(Section 2.1 [Bro04], Example 2.2 [HK14])

A" = Y (Z)am@@an—m, S om = (—1)"lon.

0<m<n

When using the basis (D"),,eng, the algebraic rules read

D" o D™ = (" N m) DM AD' = Y DDV, S =(-1)"Dm
m 0<m<n
Theorem 3.5. (Dg,0,A,,S8?) is a connected graded Hopf algebra and dual to (Pg,e,A,,S?2),
i.e.
(D1 0Dy, P)=(Dy ® Do, A,P) ¥ D1,Dy €Dy, P€E Py, (3.4)
(A,D,P®RQ)=(D,PeQ) VD eDy P,Q < Py, (3.5)
(S*D, P) = (D,S°P) VD €Dy, P € Py (3.6)

duality identities, it is sufficient to check their validity for the elements of the bases (X”)neNg
and (D")neNg due to the bilinearity of the duality pairing and the products and the linearity of
the coproducts and the antipodes. Considering (34), we indeed compute

n m n+m l l n m -
<D oD 7Xl>:< n >6n+m,l: Z (k)én,k(sm,lk:: Z (k)<D ®D ;Xk®Xl k>

0<k<l 0<k<l
= (D" ® D™ A X
for all n,m,l € Nd. Likewise,

(AD" X" @X)= Y (DFeD"FX"@X) = > Skmbn ki =0nmp = (D", X" eX)
0<k<n 0<k<n

(&:D", X™) = (_1)‘n|5n,m = (_l)lm‘an,m = (D", 8;X™)
validates (3.6).
O

At this point, we would like to move to the algebraic dual space Py*, the space of formal
series ZneNg a, D™ of which Dy is just the subspace of finite series. We can extend the Hopf

algebra operations via

( 3 anD"> o ( 3 mem) = 3 @b Dt oD =Y Y (ll“) aiby_D*,

neNg meNg n,meNg keNg 0<I<k
Ap E a,D" = g anAD" = E A+t D™ @ D*,
neNg neNg m,keNd
Spr g a, D" = E apSID" = E (=1)l"a, D",
nENg nENg nENg

but the problem is that (P4*, Ap+) does not constitute a coalgebra, because we only have that
Ap-Pg* C (Pa® Pa)”, yet
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Theorem 3.6. Ap-Py* € Py* @ Py".

Proof. At first, let d = 1. Consider D := )~ D’ € P1*. We have

Ap-D = i > DF @DV 7k = ka ® ( > D”Q"“). (3.7)
k=0

n=0k<n2 n2>k
Assume Ap-D € P;* ® P1*. Then, there is [ € N, (a})x,; C R and (L;); C P1* such that

oo

AP*D:é«ga;D’ﬂ) ®Li> =Y Dre (z_l;akL)

k=0

This is a contradiction to (37) as

1
dim span { ZazLi, ke NO} <, but dimspan{ Z ’D”Q*k,k € No} = 0.
i=1 n2>k

For d > 1, considering D := Dr’e1 € Py* will lead to the same result.

neNy

theless work with the extended operation Ap« basically as usual, and that the defining identities
of a Hopf algebra remain valid for formal series.

3.2 Tensor Hopf algebras

3.2.1 Overview

In this section, we want to introduce the following two structures and show that they are Hopf
algebras:

T(V) = é ven
n=0

®: T(V) x T(V) = T(V)

u: K - T(V), u(r)=rl

Ay: T(V)=-T(V)@T(V), u=v&...R v, is mapped to

Apu=18utu@l+ 3 > 1)@ @U@ @ Vo) & & V)
0<i<n s€Sh(i,n)

e T(V) =K, e1)=1, £(V®)={0}forneN

SE:T(V)=T(V), Sf(un®-Quy)=(—1)"v, ®--- @y
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T(V)
Ww: T(V) x T(V) = T(V),
(@ @V W (D1 @ Q) = D Tymr(1) D+ @ Tyt ()

o€eSh(i,n)
u: K- T(V), u(r)=r1
Ay : T(V) = T(V) 2 T(V),

Ag(Br1 & @)=Y 01 ® Q51 & @by

1, (V&) ={0} forneN
SE:T(V)=T(V), S2u & - Qvy) =(—1)"v, ®---Qu;

3.2.2 Concatenation product Hopf algebra

Definition 3.7. (Section 1.2.2. [Man(06], Chapter 4 [HK14]) For some real or complex vector
space V and tensor products ®, the tensor algebra of V is given by

o0

(V) = Pen, (3.8)

n=0
where V&0 .= span{1} is isomorphic to R or C, respectively.

We consider @ : T(V) x T(V) — T(V) as the algebra product on T(V) with unit 1, also
called concatenation, while T(V) ® T(V) ¢ T(V) reoccurs as the space to which the coproduct
maps.

Lemma 3.8. (Section 1.2.2. [Man06]) The couple (T(V'),®) is a connected graded unital algebra
under the grading given by (38)

Proof. Tensor products are bilinear and associativity is fulfilled due to the usual identification
w1 @ us ®uz = (u; @uz) ®uz = u; ® (ug ®uz). The unit is by definition given by 1. O

Definition 3.9. (Based on the definition of the shuffle product in Chapter 4 [HK14]) Let A,
T(V) — T(V) ® T(V) be the linear map generated by A,1:=1® 1 and

Aju=1u+u®l+ Z Z V(1) @+ @ Vg (i) ® Vo (i41) @ * * * & Vg () (3.9)
0<i<n oc€Sh(i,n)

forallu=v; ®@--- @0, € VO where

Sh(i,n) :={oc € Sylo(l)<...<o(i),c(i+1)<...<o(n)}
and S,, is the group of permutations of the set {1,...,n}.
Ezample 3.10. Let a,b,c,d € V be arbitrary. Since

Sh(l, 4) = {(1234), (2134), (3124), (4123)},
Sh(2,4) = {(1234), (1324), (1423), (2314), (2413), (3412)},
Sh(3,4) = {(1234), (1243), (1342), (2341)},



3.2. TENSOR HOPF ALGEBRAS 21

we get

ALa®b®cd)=10a@bRc®d4+a®bRc®d®1+a®bR®c®d+bRaRc®d
+cRabRd+dRaRbRc+aRbRcRd+aRcRbd
+a0debRc+bRcRa®d+bdRa®c+cRd®a®b
+aRbRcRd4+abRdRVc+aRcRIADb+bRc®RdR a.

If b = c and a = d, we thus have

Ala®bOb®a)=12a0bRbRa+aRbRbRa@1+aRbRbRa+2bRaDbDa
+aRaPbRb+20RbRbRa+aRaRbRb+bRDRa®a
+20RaRaPb+aRbRDIRa+20RbRaRb+IRbIRa® a.

Lemma 3.11. (Proposition 1.9 [Reu93], Section 1.6.2. [Man06]) The operator A, is the unique
(T(V),®) homomorphism to T(V) @ T(V) satisfying

Av=1v+uv®1l (3.10)

for allv € V. The object (T(V),®,A,) is a connected graded bialgebra.

n=1. Let n € Nand vy,...,v,41 € V be arbitrary. Since for all ¢ € Sh(i,n + 1) we have
g(i)=n+1loron+1)=n+1, we get

Ay (un ® Upt1) = Z ((Ull ® Unt1) ® UZ + ull ® (U/QI ® Un-&-l)) + tn ® Un+1 + Unt1 ® U,
(un)

= ALty @ (Vpp1 @1+ 1@ Vpg1) + Un @ Vpg1 + Vng1 @ Up

=Auty @AVt — Uy @Vp1 1L — 1@ Uy @ V.

Hence, inductively we prove

Ay(v1 @ Qvp) = Apv; @ -+ @ Ay, (3.11)

(id®Ay)ALw = (Ay ®id)Ayw holds for all v € V. Together with the counit given by £,(1) =1,
e, (V®™) = 0, n > 1, all the compatibility requirements are fulfilled, hence (T(V),®,A,) is a
bialgebra. Since from (3.9) we see that

vaébn C @ V®m ® V®n—m7

0<m<n

it is also connected graded.
Lemma 3.12. (Lemma 1.5 [Reu93], Section 1.6.2. [Man06]) The linear operator St : T(V) —
T(V) generated by
S21:=1, S ® - ®uy):=(-1)"v,® - ®v; Y€V
is an antipode of (T(V),®,A,).



22 CHAPTER 3. CONNECTED GRADED HOPF ALGEBRAS

Proof. (Proof of Lemma 1.5 [Reu93]) As mg (id ® S¥)A 1= m (S ® id)A 1= uel= 1, it only

remains to show
my (id © S¥)Auu = mg (8¢ @ id)Ayu =0 Yue VO™ meN, (3.12)
where we proceed by induction. Regarding the case m = 1, we obtain
m(I[d®SYAW =108 +vR81=—v+v01=0

as well as
m®(SL-”®id)A v=8!1®v+Sv®1=10v—0v=0.

Zw ® Sgw"” ZSL“w @ w”

for arbitrary w € Ve Let 2 € V be arbitrary as well. Then,
Aplw@z)=AwRAyx = Z (W e W' @r)+ (v @r)@w")
(w)
and therefore
mg (8¢ @id)Au(w @ z) =Y (Siw' & (w" @)+ SL(w' &) @ w”)
(w)
= (ZSgw’ ®w”) QT+ ZSgw’ ®w" = 0.
(w)
Analogously, we get
mg (id ® SE)Au(z @ w) = Z (w' @S2z @uw”)+ (z@uw) ®Stw")
(w)

= (Zw’@Sgw”) ®x+x®2w’®8§w” =0
(w) (w)

O
Corollary 3.13. (Section 1.6.2. [Man06]) (T(V), ®, Ay, S¥) is a connected graded Hopf algebra.

3.2.3 Shuffle product Hopf algebra

Theorem 3.14. Let (+,) be a duality pairing of V' with some vector space V. Then, the pair
(T(V), T(V)) is a pair of dual vector spaces with duality pairing

<Zu > um> = (i, i) s (3.13)
n=0 m=0 T n=0

where (al,bl) g := ab, (v,7)g, = (v,0) and

k l k
<zv;‘®m®vg,za{®m®az> S bl (et ).
_ B

i=1 j=1
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that (V‘X”c V®k) is a pair of dual vector spaces and hence there is @ € V®k such that
0 # <uk,ﬂ>®k = (u, Q).

Analogously, we show that for each Z € T(V) there is 2 € T(V) such that (z, Z) # 0.
O

Lemma 3.15. (Sections 1.4 and 1.5 [Reu93], Chapter 4 [HK14]) The shuffle product Lu : T(V) x
T(V) — T(V) bilinearly generated by

lwWu:=ulll:=u

and
(171®®171)L|_|(171+1®®17n) = Z ﬁ0*1(1)®"'®6o’*1(n)
o€Sh(i,n)

is dual to A,.
Proof. Let vi,...,v, € V and 01,...,0k41 € V be arbitrary. Put w = v ® --- Q@ vy, a =
D@ @0 and b 1= Tpy1 @ @ Tppy. If k+1#n, then (w,a Wbyt =0 = (A, w,a® b)rg as

we Ve awbeVIED  AwePVI VI agbevVOF oV (3.14)

i=0

If n="Fk+1, then

(w,a W by = Z HU]7/UO'71(])> Z H”U(J)vvj

o€Sh(k,n) j=1 o€Sh(k,n) j=1

= Z (Vo(1) @+ @ Vg (k) U1 @ @ Tk) o (Vo (k1) @ *** ® Vr(n)s Ukt1 @ -+ ® T )y
oeSh(k,n)

= (AL w,a ®b)rg
For z € T(V) we have
(z,lwuyr = (z,uw 1)p = (z,uyr = (Auz, 1 @ u)rg = (Auz,u ® 1)1rg
and for x,y € T(V) also
1zwy)r=(Lz)r(L,y)r={10 1,2 Qy)rg = (Aul,a ®b)1g

The duality of L and A, then follows by (bi)linearity.
O

Lemma 3.16. (Chapter 4 [HK14]) The deconcatenation Ay : T(V) — T(V) @ T(V) linearly
generated by

Agl:=101, Ay & Olp) = 1@ U@V @ @by, (3.15)
=0

is dual to the concatenation .
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Proof. Consider w =0, ®...Q%, € Vanda=01®...QUsb=tp1®...Quegy € V,0< k < n.

(a®b,Agw)rg = (V1 @ ... ® Uk, 01 @ ... @ k) (Vhi1 @ ... @ VUn, Vg1 @ - © )y (i)
= <a®bvw>T~

Lemma 3.17. The linear operator S : T(V) — T(V) generated by
S81:=1, St ®  R0y):=(-1)"0, @ @
is dual to S§.

Proof. We have for u € V& and v € V" that (u, S®w)r = 0 = (Sgu,w)r if m # n. Also,
($#1,1)p=1=(1,88)pand for u =v1 @ -+ @ vy, w =1 X - - - ® Ty, we get

=

<u78§?w>T =(-1)" (Vi, Dp—i) = <3§§an>T-

i=1

O

Theorem 3.18. (Proposition 1.9 [Reu93], Chapter 4 [HK14]) (T(V),w, Ay, S2) is a connected
graded Hopf algebra and dual to the Hopf algebra (T(V),®,A,,S%).

3.3 Formal series, Lie algebra and truncations

3.3.1 Formal series

This section is based on the use of formal series and infinite linearity in [Reu93], though our
definitions are a bit different.

For any vector space G graded by (G;);, i.e. G = @;-, G, for subspaces G;, the corresponding
space of formal series is given by

G := ﬁGi = {iun
i=0

n=0

U, € G, VM € NO},

where the product is the Cartesian product of vector spaces (Chapter V Section 5. [RR64]). For
the space G ® G, consider the induced grading

(G@ G = (P Cm@GCim) . (3.16)

. i
m<i

Let m, : Gn — G, and 7, : [G ® G]n — [G ® G],, be the canonical projections. Generally, for

k € N, k > 2, the grading of the space G®* is given by

C*i=( D GCGmeo-o Gmk)i,
mi,...,mxE€No:

My ebmg =i

and we denote the canonical projection on [G®¥],, by i
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Theorem 3.19.

(i) If (G,9) is a graded algebra, then G is an algebra together with the extended product
o, G x G — Gp given by

Tom,, (a ® b) = 7,(a ¢, b) Zmaown b=m.m, (a®D).
i=0

(ii) If (G, A) is a graded coalgebra, then the extended coproduct A, : G — [GQ G given by
T, A, = A,
is coassociative. If (G, A) is counitary with counit €, then ¢, : Gr — K given by
€, 1= ETQ.
fullfills the counit property

(e, 1A, = ([d® e, )A, =id.

(iti) If (G,o,A) is a graded bialgebra with unit map u and counit € over the field K such that
B>0 C kere, then (G, %y, A,) fulfills the compatibility requirements

(a) A,m, = (m, ®m, )(id®7Qid)(A, ®A,) (A, is an algebra homomorphism from
(G, 0.) to (|G & Gl 2,)),
(b)) A,u=u®nu,
(c) eam, =¢, e, (g is an algebra homomorphism from (G, o,) to (K,-)),
where o is defined as in (2.9).

(iv) If (G,o,A,S) is a graded Hopf algebra such that B>° C kere and S, : G — G is the
extended antipode given by

TS, = Smy,
then S, fulfills the antipode property

m,, (S, ®id)A, =m, (id® S,)A, = ue

x

Proof.

(i) From associativity of o, we conclude

Tn((a o, b) o, €) E mi(a o, b) o my_jc= E E (mja o mi—;b) o mp_sc

1=0 j=0
n J n n—=k
ZZmao(m_]’bom_zc ZZ TEa o (mh o Tp_k_iC)
i=0 j=0 k=0 1=0
n

Z ka0 Tk (b o, ¢) = mp(a o, (bo, ).
k=0
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(ii) Coassociativity of A implies
B(A, @id)A, = (A®id)r, A, = (A®id)Ar, = (id ® A)AT, = (id® A)x, A,
=rBlid® A,)A,.

r,Am, = Am,m, =Am,zr, = (m, ® m,)71324(A @ A)xr,, = (m, ® Hlo)%13247fkl] (A, ®A)
= (m, @ m,)7H 71304 (A, ® A,) = 7, (m,, @m, )F1324(A, @ A,)

The second compatibility requirement follows from

Al=Aml=1,A1=71,(1®1)=1®1.

mom,, (id ® S,)A, = m,x,(Id® S,) = m.(id ® S)r, A, = m,(id ® S)Am, = uem, = myue,,

since uem, = 0 = m,ue, if n # 0 and otherwise uemy = ue, = moue,. Likewise, m,m, (S, ®
id)A, = myue,.

O

In the following, we will simply also write o, A, g, S for o, A,, &,, S, when it is clear from
the context that we mean the extended operations on Gi.

3.3.2 Lie Algebras

Definition 3.20. (Section 0.1 [Reu93]) A Lie algebra is a vector space [ together with a bilinear
map b=1-,-]: [ x [ — [, the Lie bracket, with the properties

1. [z,z] =0forall z €,

2. [[a,b],¢] + [[b,d],a] + [[c,a],b] =0 for all a,b,c € [ (Jacobi’s identity).
Remark 3.21. (Section 0.1 [Reu93]) As for all a,b € [ we have

0=[a+b,a+0b] =[a,a] + [a,b] + [b,a] + [b,b] = [a,d] + [b,al,
the Lie bracket is antisymmetric, i.e.
[a,b] = —[b,a] VYa,bel
Definition 3.22. A sub Lie algebra of a Lie algebra ([, b) is a subspace V' C [ such that
VvV,

The sub Lie algebra generated by a subspace S C [, i.e. the intersection of all sub Lie algebras
containing S, is denoted by ().
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Remark 3.23. (Section 0.1 [Reu93]) For any algebra (A, <), there is a Lie algebra (A, b,) given
by

b.(a,b) :=[a,b], :=aob—boa Va,be A
If A is an algebra graded by (A;);, put ga := [[;~, A;, which is a Lie algebra together with the
Lie bracket b, of the extended product ¢.

Definition 3.24. (Based on Section 1.3 [Reu93]) For a Lie algebra ([, b), the linear operator
R : T(I) — [ recursively generated by

R1=0, Re=2, R@du)=[z,R%] YreluecPE"

n=1
is called right norm bracketing.

Theorem 3.25. (Based on Section 0.4.1 [Reu93]) For a subspace W of a Lie algebra (1,b), we
have
RT(W) = (W)e.

Proof. (’2’ part of proof is taken from Section 0.4.1 [Reu93]) On the one hand, we have RT (W) C
(W), since if Ru € (W), and w € W, then also R(w @ u) = [w,Ru] € (W), because (W)y is
a sub Lie algebra containing W. On the other hand, each v € (W), can be written as a linear
combination of nested Lie brackets. Since

[la,b],c] = =[[b, c],a] — [, a],b] = la, [b,c]] + [b, [c, a]] = [a, [b,c]] = [b; [a,c]] Va,b,ce (W)
due to Jacobi’s identity and antisymmetry, we can inductively transform all nested Lie brackets

into a linear combination of right norm bracketings, and thus we also have RT(W) D (W),. O

3.3.3 Exponential map

Let A be a connectedly graded algebra, this time over a field of characteristic zero. Put %4 :=
1+ ga C Ap (Section I1.3. [Man06]). Define the maps exp, : ga — %4 and log, : ¥4 — ga by

s L s (_1)n—1uon
exp, (u) := Z o and log,(1+u) := Z — (3.17)
n=0 n=1

(Equations (3.1.1) and (3.1.2) [Reu93], Section I1.3. [Man06]).
Theorem 3.26.

1. (Equation (3.1.3) [Reu93], Section IL.3. [Man06], Section 2.3 [HK14]) The maps exp, and
log, are bijective and log, is the inverse function of exp,.

2. (Based on the proof of Theorem 3.2 [Reu93]) If u1,us € ga with uy o us = us ¢ uy, then
exp, (u1) ¢ exp, (uz) = exp, (uz) ¢ expy(u1) = exp,(u1 + us).
If v1,v9 € Ga with v1 ¢ Vo = vy 0 vy, then
log, (v1) +1log, (v2) = log, (v1 © v2).

3. (Based on Proposition I1.3.1. [Man06]) The pair (44, ) forms a group.
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We do not proof Statement 1. of the theorem. It is a standard fact for the case of the
tensor algebra (T(V),®), and the general case follows easily from it through looking at suitable
homomorphisms.

Proof of the remainder.

2. Let uy,us € ga with uy ¢ ug = us ¢ uy be arbitrary. Then,

exp, (u1 + uz) :Z U1+U2 ZZ( ) OUQ _ZZ m|2ui

n=0 n=0m=0 n=0m=0

oA o= USE o g
- ZZ 1k'l' 3 = exp,(u1) ¢ exp, (uz).
k=0 1—=0

Let v1,v9 € ¥4 with vy ¢ v2 = vy 0 v1 be arbitrary. Then, we obviously have log,(vy) ¢
log, (vg) = log,(ve) ¢ log,(v1), and thus

expo(logo(vl) + logo(UQ)) = expo(logo(vl)) ¢ exp, (logo (02)) =V1002 = eXpo(logo(Ul =+ vQ))'
Due to injectivity of exp,, we get log,(v1) + log,(ve) = log, (v1 ¢ v2).
3. We have g4 0 g4 C ga due to the grading, and thus also ¥4 ¢ %4 C ¥4 since Y4 =1+ ga.

Furthermore, since exp, is surjective, for any y € 94, there is © € g4 such that y = exp,(x),
and due to 2.,

Y exp,(—x) = exp,(z) ¢ exp,(—7) = exp,(r — ) = exp,(0) = 1.
O

Theorem 3.27. Let (A, o) and (A, ) be connectedly graded algebras and A : An — Ap be an
algebra homomorphism such that A1 =1 and Amp,v = m,Av for all v € A, n € Ng. Then,

Aexp,(u) = exp,(Au) Yu € ga

and
Alog,(v) =log,(Av) Vv e G4.

Proof. For each u € g4, we have

Aexp,(u i

were the interchangeability of the infinite sum and A comes from the fact that Ar,v = 7, Av for
all v € A, n € Ng. For each 1 +u € g4, we have

OTL

&0 Au™ e Au)*™
= A T (),
n=0 : :

n=0

& nlon

Alog, (1 + u) Z i )" A i i Au) = log, (1 + Au)

n=1 n=1 n=1

= log, (A(1 + u)).
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3.3.4 Truncations

This subsection prepares a detailed treatment of the notion of truncations as they are used
in Section 2.4 and in Chapter 4 [HK14]. For an algebra (A,¢) graded by (A;);, the space
A" =@, 11 Am is a two-sided ideal of A as well as the space A" =[] _, ., Ay, is an
ideal of (A, 9).

We assume that the following statement is standard, but did not find it in the literature we
used. Part of the statement on quotient coalgebras is given in Section III.1 [Kas95], though.

Theorem 3.28. Let I be a subspace of a vector space V and 7 : V — V/I be the quotient map.
(i) If (V,o) is an algebra, there is a map o : V/I x V/I — V/I such that
m, (T®7)=mm, (3.18)

iff T is a two-sided ideal of (V,). In this case, the map is unique and (V/I,o.) is an
algebra, the quotient algebra.

(ii) If (V,A) is a coalgebra, there is a map Ay : V/I = V/I®V/I such that
A= (m@mA

iff I is a two-sided coideal of (V,A). In this case, the map is unique and (V/I,A;) is a
coalgebra, the quotient coalgebra.

Proof.

(i) If there is such a map o, then
TIoV4+Vel)=mm(IQV+VI=m, (rm) IV +V&I)=/1{0},

hence T oV +V oI € kerm = I, thus I is a two-sided ideal.
If I is a two sided ideal, then a map ¢, is well-defined through

(mv1 O TU2) := (V1 © Va).
Indeed, if mv; = mwy and 7Yy = Tws, then
V1 Uy —w Quws Eker(rR7) =kerr @V +V@kerr=IV+VRI

hence
vViovg—wiowy €loV+VolC]

hence 7(v1 ¢ v2) = w(wy ¢ wa).

as a definition. The only thing left to show is associativity of ¢,. If v1,v5,v3 € V, then
(V1 0f TV2) 0f T3 = T(V1 0 V2) Ox MUz = T((V1 O V3) 0 v3) = w(v1 © (V2 0 v3))

= vy Op (V2 © V3) = Ty Ox (MU Of TV3).

(ii) Due to the formal duality of algebra products and coproducts, the proof of the second
statement is analogous to the proof of the first one.

O
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Due to the grading, we may identify both Ap/Af"™ and A/A>™ canonically with A™ :=
@, _, Amn. The quotient map 7™ : A — A™ then restricts to the other quotient map 7" [4 :
A — A™ and is in both cases just the canonical projection onto A™. In either case, we obtain the
same quotient algebra (A™, o, ), which is called the n-th grade truncation of the graded algebra
A, or shortly a (n-th grade) truncated algebra.

On the other hand, starting from a graded coalgebra (C, A) graded by (C;);, the space C~™
is not generally a coideal of C, as well as C;™ does not generally fulfill the coideal property with
respect to the extended coalgebra Cyy. Fortunately though, C™ is both a subcoalgebra of C' and
fulfills the subcoalgebra property with respect to the extended coalgebra Cri. We call (C™, A,,)
where A,, ;= Algn the n-th grade truncation of the graded coalgebra (C,A), or shortly a (n-th
grade) truncated coalgebra. We will often simply write (C™, A) instead of (C™, A,,).

In the case of a graded bialgebra, we will combine the notions of truncated algebra and
truncated coalgebra to that of a truncated bialgebra.

Theorem 3.29. Let (B,o,A) be a bialgebra graded by (B;); over the field K with unit map
u and counit . Then its n-th grade truncation (B™, ¢, A,), called a (n-th grade) truncated
bialgebra, fulfills the truncated compatibility requirements

1. Aym,, = m,, (A, ® A,) (A, is an algebra homomorphism from (B™,¢,) to ([B ®
B]",2,)),

2. Apu=u®u (uis a coalgebra homomorphism from (K,idg) to (B™,A,)),

3. epm,, =€, ®e, (s is an algebra homomorphism from (B™,¢,) to (K,-)),

where m,, : B"® B™ — B" is the linear operator corresponding to ¢, the pair ([B ® B]",gn) is
the truncation of the algebra (B ® B, o) defined in (2.9) under the grading ([B ® B);); as defined

Proof. Let ©™ denote the projection of B ® B onto [B ® B]".

Apm,, (7" @ 1") = Apr"m, = 7" Am, = 1"m,(A ® A) = m,, (7" @ ") (A ® A)
= (A ® A (" © ")

Since 7™ @ 7™ is a surjective map into B" ® B", we get A,m,, = m,,, (A, ® A,). The equation
Aj,u=u® u is clear since obviously A,1 = Al =1 ® 1. Finally,

En,, (" @ 7") = g, 7" m, = em, = (e ®e¢) = (6, Ve, (7" @ 7).
O

Theorem 3.30. Let (H,o,A,S) be a Hopf algebra graded by (H;); with unit map u and counit
€. Then S, := Sy~ fulfills the antipode property

m,, (S, ®id)A,, = m,,(id ® S,)A, =ue,

in its n-th grade truncation (B™, ¢, Ay, Sy), which we call a (n-th grade) truncated Hopf alge-
bra.

Proof.

m,, (S, ® id)A,7" =m,, (S, ®id)7"A = m,, 7" (S ® id)A = m,, (7" @ 7™")7" (S ® id) A
=7"m, 7" (S ® id)A = 7"m, (S ® id)A = 7"ue = ue = uen”
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Note that the n-th truncated algebra (A™, ¢, ) is again a graded algebra. The grading is given
by (A?"); where A? = A; for i < n and A? = {0} for ¢ > n. Hence, we get functions exp,,, and
log,,, as described in the previous section.

3.4 Primitive and group-like elements
Definition 3.31. (Based on Section I.5. [Man06], Section 2.3 [HK14])

1. (i) The subset of group-like elements of a coalgebra (C,A) is given by
GrLkC :={ce C\ {0}|Ac=c® c}.

(ii) The subset of group-like elements of the space of formal series Cyy of a graded coalgebra
(C,A) is given by
GrLk Cp :={c € Cn \ {0}|Ac =c® c}.

(iii) The subset of n-th grade truncated group-like elements of a coalgebra (C,A) graded
by (C;); is given by

Grlk, C :={ce C\ {0} Ac=1"(c® )},
where 1™ : C ® C'— [C'® C]™ is the canonical projection.

2. (i) The subspace of primitive elements of a bialgebra (B, ¢, A) with unit element 1 is
given by
PrimB:={be B|Ab=1®b+b®1}.

We put Prim S := S N Prim B for any subspace S of B.

(ii) The subspace of primitive elements of the space of formal series By of a graded
bialgebra (B, <, A) with unit element 1 is given by

Prim By :={b € Bp|Ab=1®b+b®1}.
We put Prim S := S N Prim By for any subspace S of Byy.
Remark 3.32.

(i) For any ¢ € GrLk C, where (C,A) is a coalgebra with counit ¢, we have £(¢) = 1 since
¢ # 0 and
c=(e®id)Ac= (e ®id)(c® c¢) = e(c)c
due to the counit property (25)
Analogously, in the case of a graded coalgebra C, we have e(¢) = 1 for all ¢ € GrLk Cfy.

(ii) For any b € Prim B, where (B, ¢, A) is a coalgebra, we have e(b) = 0 since

b=(e®id)Ab=(¢®id)(1@b+b®1) =c(1)b+e(b)l =b+e(b)1.

Analogously, in the case of a graded bialgebra B, we have £(b) = 0 for all b € Prim Byy.
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Remark 3.33. For a graded coalgebra (C, A), we have
7" GrLk Cy C Grlk, C.
Indeed, if ¢ € GrLk Cpy, then
Arc=1"Ac=1"(c®c) =" (r"c® 7"c)

and also 7™c # 0 since g(c) = 1.
A character of an algebra (A, ¢) is an element of A*\ {0} which is an algebra homomorphism
(Section IL.4. [Man06]).

Theorem 3.34. (Based on Section 2.3 [HK14]) Let (A,¢) be the dual algebra of a coalgebra
(C, A) under some duality pairing (-, -).

1. An element c € C is group-like iff (-,c) is a character of (A, o).

2. If both (A, ) and (C,A) are graded, then c1 € C is group-like iff {-,c1) is a character of
(A, ) and ¢y € Cry is group-like iff {-,ca) is a character of (A,9).

Theorem 3.35. (Proposition 1.7.3. [Man06]) Let (H,o,A,S) be a Hopf algebra with unit map
u, unit element 1 and counit €. Then, Sx = —x for all x € Prim H. If H is furthermore
connectedly graded by (H;);, we have Sz = —x for all x € Prim Hyy.

Proof. (Proof of Proposition 1.7.3. [Man06]) Let « € Prim H be arbitrary. Then,
0=ue(z) =m,(S®i)Az=m,(SRid)(1®x+2x®1)=Slox+Szrol=u1r+ Sz,

thus Sz = —=z.
The proof for x € Prim Hyy is completely analogous.
O

Theorem 3.36. (Proposition 1.7.3. [Man06]) For a bialgebra (B,o,A), Prim B is a sub Lie
algebra of (B, b,).

Proof. (Proof of Proposition 1.7.3. [Man06]) Let z,y € Prim B be arbitrary. Then,
Alz,yl, = A(zoy—yox)=Az oAy — Ay o Ax
—(1®z+201)e(10y+y®l)—(1oy+yel)e(l®r+r®1)

=1 xoy) +tyRz+2zRy+(zoy) @1 -1 (yozx)—zrzQy—yRzr—(yor)1
=1 @oy—yoxr)+(zoy—yor)®1=1® [z,y]. — [z,y], ® 1.

Thus, [z,y], € Prim B.
O

Theorem 3.37. (Based on Theorem 1.4 and Lemma 1.5 [Reu93]) Let (H, o, A, S) be a Hopf alge-
bra connectedly graded by (H;); over a field of characteristic zero, Ry, the right norm bracketing
operator of (H,b,) restricted to T(H1), D the derivation generated by

Dhy, = nhy, Vhy, € Hy,
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furthermore * the convolution product on L(H,H) and Ey, : (T(Hy),®) — (H,<) the algebra
homomorphism generated by
EH1h1 = h1 Vhl S Hl.

Then,
Ry, = (D+xS)En, (3.19)
and

(D *S)prim b = Dlprim - (3.20)
Proof. (Based on the proofs of Theorem 1.4 and Lemma 1.5 [Reu93]) First of all,

(D*S)Eg,1=m,(D®S)A1=D1681=0=Ry1
and, for all v € Hy,
(D+«S)Eg,v=m,(D®S)Av=D1® Sv+ DvoS1 =v=Rg,v.

Assuming we have (D x 8)Epy, 4 = Ry, 4 for some & € T(H;) and putting v := Fp, 4, we have
for all z € H; that

(D*S)Ey, (r® 1) =m,(D®S)A(x @ u) ZZD (1 0uy) 0 S(wg 0 up)
(=) (u)
= ZZ(Dml ouy + 1 ¢ Dug) o Sug ¢ Sz
() (u)
:Z(Dloul+10Du1)08u205x+Z(D$<>u1Jr:voDul)oSquSl
(u) (u)
:—ZDuloSqux+ZxouloSu2+ZzoDu1oSuz
(u) (u) (u)
—(DxSuox+zous(u)+xo(DxShHhu=—-Ry,dox+xoRp, 0
= [z, Ru, U)o = Rp, (z @ 0).

(DxS)y=m,(D®S)Ay = D1 Sy+ Dy® S1 = Dy,

O

Corollary 3.38. (Based on Theorem 1.4 [Reu93]) For a Hopf algebra H connectedly graded by
(H;); over a field of characteristic zero, we have

Prim<H1>o = <H1>bo

Proof. (Based on the proof of Theorem 1.4 [Reu93]) Since Prim(H;), is a Lie algebra that
contains Hy, we have (H;)p, C Prim(H;),. On the other hand,

Prim(H;), = DPrim{H;), = (D * S) Prim(H;),
C (D*S){(Hi)o = (D +8)En, T(H1) = R, T(Hy) = (Hi)s,
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Theorem 3.39. (Based on Theorems 3.1 and 3.2 [Reu93]) For a Hopf algebra (H,o,A,S)
connectedly graded by (H;); over a field of characteristic zero, we have

Prim Ay = H Prim H,, and exp,(Prim Hy) = GrLk H.

n=1

Proof. (Based on the proofs of Theorems 3.1 and 3.2 [Reu93]) If x is in Prim Hyy, then, due to
the grading,
Ampr=r,Ac=7,1Q02x+2Q1)=1Qm,x+ 7,z ® L.

On the other hand, of course, the spaces Prim H,, are linearly independent and for x,, € Prim H,,,
we have

AZIn—ZAIn—Z 1®$n+xn®1)=1®(an)+(2zn)®1
n=1 n=1 n=1

1euoe(u®l)=u®u=(u®l)o(l®u)

and using Theorem :3.27: for the algebra homomorphism A : (Hy, o) — ((H ® H)m,¢), we have
that

Aexp,(u) = exp,(Au) = exp,(1 @ u + u® 1) = exp,(1 ® u) ¢ exp,(u® 1)
= (L@ exp,(u)) & (exp,(u) ® 1) = exp, (u) ® exp, (u).

For any v € GrLk Hp, we have that 5( ) = 1 due to the extended counit property and thus

Alogo(v) = 1ogﬁ(Av) = log,(v®@v) = 1ogﬁ((1 ®uv)o (v 1)) (3.21)
= log,(1 ®v) + log,(v® 1) = 1 ® log,(v) + log,(v) ® 1. '

O

Corollary 3.40. (Based on Section 2.4 [HK14]) For a bialgebra (B, o, A) connectedly graded by
(B;)i over a field of characteristic zero, we have

exp, (Prim B") = 7" GrLk By = GrLk, B.

that
Alog, (v) = loggw (Av) = loggﬂ (7" (v®v)) = 1" log,(v ®@v) = 1" (1 ® log,(v) + log,(v) ® 1)
=1® 7r" log, (v) + 7r" log,(v) ® 1 =1®log, (v)+log, (v)®1.
Thus, log<> (GrLk H) C Prim B, implying GrLk, H C exp, (Prim B"). Again applying The-

GrLk, H C exp, (PrimB")= 7" GrLk By C GrLk,, H.
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FEzample 3.41.

PrimP,; = Prim(PdJ). = <'Pd’1>[;, = Pa,1
since e is commutative and hence also

Prim(Pg)n = Pa1 = span{X;|1 < i < d}.

2. For the concatenation algebra, we again have (V')o = T(V'), hence
Prim(T(V), Au) = (V)e, -

The elements of Prim(T(V'), A,) are called Lie polynomials over V (Section 1.3 [Reu93]).
We put T((V)) := T(V) and call

oo

Prim(T(V), Au) = [[ ((V)e, NVE)
=1

the space of over V' (Section 3.1 [Reud3fy.

3. For the shuffle algebra, (V) is a proper subspace of T(V). Therefore, we may only

mand in the expansion of Agu for some element of the form u = v; ® --- ® v, v; € V is
specific to u, hence none of those summands can be canceled out by Agw for an element w
of the same form as u, but linearly independent. Hence, there cannot be primitive elements
of Ag in V®" for n > 1. Therefore,

Prim(T(V)),Ag) = Prim(T(V),Ay) =V

Interestingly, the example of (T((K?)),®,A,), K being a field of characteristic zero, can be
used to show the following.

Theorem 3.42. (Based on Corollaries 3.3 and 3.4 [Reu93]) For an algebra (A, o) connectedly
graded by (A;); over a field of characteristic zero, exp,(W) is a subgroup of (4a,o) for any sub
Lie algebra W = [[:2 (W N A;) of (ga,b.).

Proof. (Based on the proof of Corollary 3.3 [Reu93]) Let {e1,e2} be a basis of K2. Then, we
of course have ey, es € Prim(T((K?)),A,) and hence exp(e1),exp(es) € GrLk(T(K?2)),A,). We
compute

Ay (expg(e1) @ expg(e2)) = Ay expg(e1) ® Ay expg (e2)

= (expg (e1) @ expg (1)) & (expg (e2) ® expg (€2))
= (expg (e1) ® expg(e2)) @ (expg (e1) ® expg (e2)).

I1Note that in the case where V is infinite dimensional, the space of Lie series defined in [Reu93] is strictly
larger than the one presented here. According to our definition, Lie series always reduce to finite sums when
projected down to T™(V'), which is not the case in [Reu93]. The definitions agree if V is finite dimensional.
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Thus,
expg (e1) ® expg (e2) € GrLk(T(K?),A,) = expg (Prim T(K?)) = expg (({e1, €2)p,, )i)
Now, let v1,v2 € exp,(W) be arbitrary. Let A : (T((K?)),®) — (Am,<) be the unique algebra

homomorphism such that Ae; = log, vy, Aey = log, vy and T, Az = Am,x for all z € T((K?)).
Then,

e A S (de)
Aexp®(ei):/1nz:% nl :; ! :nZ::O iy = exp,(4e;) = v;,
therefore
o102 = (Aexpg (e1) o (Aexpg (e2)) = Alexpg (e1) & expg (e2))
and finally

v1 o € Aexpg (€1, €206, ) = expy(Al{er, €206, 1) = expy((Afer, €26, 1)

= expo((<10go U1, logo U2>bo)1—[) C expo(W)'
Since for any v € exp,(W), we have v°~!
being a subgroup is complete.

= exp,(—log,(v)) € exp,(W), the proof of exp,(W)

O

Remark 3.43. The Lie series logg (expg (a) @ expg, (b)) (Corollary 3.4 [Reu93]) is called the Baker-
Campbell-Hausdorff series of a,b € Prim(T((V)),A,). See Chapter 3 [Reu93] for more on this

series.

Remark 3.44. (Based on Corollary 3.3 [Reu93]) We now especially know that for every Hopf
algebra (H,o,A,S) connectedly graded by (H;);, the set of group-like elements GrLk Hy =
exp, Prim Hyy is a subgroup of (%y,¢). Since

all x € GrLk Hyy.
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3.5 Connes-Kreimer Hopf algebra of trees and forests

3.5.1 Trees and forests

In the following definition, we formally introduce the set of forests %7 and the subset of trees
It labeled or decorated by indices from some set 1.

Definition 3.45. (Based on Section 2.2 [HK14]) For a non-empty set I let .77 C % be sets,
1 € %5 an element, ©® : %#; x %#; — Z an associative and commutative binary operation,
|| + #1 — Ny a function and |-]; : F; — J7, i € I injective functions such that the following
conditions are fulfilled.

(i) 10¢=¢(01=(¢ V(e 7,
(ii) 7 is the disjoint union of the sets | Fy];, i € I,

(iii) For every ¢ € %\ {1}, thereisann e Nand r,...,7, € Jysuch that (=7 ©--- O T,
and this factorization is unique up to commutativity,

(iv) |G © Gl =[G+ ¢ V¢ € i,
) [Slil=1Cl+1 VCe Friel,
(vi) (]| =0 = (¢(=1.
We call 1 the empty forest. If I consists only of one element j, we put F := F;y, 7 := T 5,

and |-| := [-]; and call .# the set of undecorated forests and 7 the set of undecorated trees.

3.5.2 Commutative Hopf algebra

Let Z1 = {C € 54}||C| = n} and I, := 1 N F1 . We extend @ bilinearly from .#; x % to
(Z1) x (Z1) and all |-]; linearly from .Z; to (F;).

Lemma 3.46. ((Z),®) is a commutative unitary algebra connectedly graded by ((F1n))n-

Definition 3.47. (Equations (48) to (50) [CK98], Equation (2.3) [HK14]) Let A, : (%) —
(Z1) ® (Z) be the linear map recursively generated by

Al1:=1®1, ACli=[¢i@1+30d® [])AL A(GOGR):=AG0A L, (3.22)

n cgzn — %-&-1

0 1 —> .

1 — !

2 B v
! !
.o N

3| v J
v Y
i i

Table 3.1: The action of |-].



38 CHAPTER 3. CONNECTED GRADED HOPF ALGEBRAS

where ¢, (1, {2 € #; and © is again the canonical associative product on (F;) ® (Fy) (cf. (2.9))
generated by

(GLem) @ (C®n2) = ((1©&)®(m On).
Furthermore, let € € (#7)" be generated by

e(¢) =01, C€Z.

Ezample 3.48. In order to find the value of A*Kﬁ}lg, we first compute generally those for the first
two linear trees

Aei=0@1+0dR[])A1I=2R1+1® -,

An=101+0dQ[];)A=1R1+Q+1Q1,
and then specifically

ABr=AB0AL3
=BER1I+ LB 2+BRB+ LR+ 2@+ 2@ B+18Q10
+ 3@ W13+ 1 1813,

ABB =81+ ({d®|]1)A, 83
=1+ + .80+ 80E+olQl+esW+el+iol
+ @ ef+ 10 LR
By identification of the labels 2 and 3 we furthermore get
ABE=ER1l+ B30 +2.8008+2B08B+ee@ @2 +2e0 ¢f+10 BB,
and identifying all the labels we have the undecorated case

AP=0U01+11R-+2.101+21R]+-.0V+2:-0J+ 104
Theorem 3.49. (Based on Equations (52) and (53) [CK98], Section 5.1 [F0i02], Section 2.2
IHK14]) ((Z1),©,A,,8%) is a commutative Hopf algebra connectedly graded by ((F1,))n with
counit €, where the linear map S : (Fr) — (F1) is recursively generated by
S1:=1, S(QOG):=8008C, S(i=-m(S o |[])A.C (3.23)
Proof.
1. ((Z1),A,) is a coalgebra. (Section 5.1 [F0i02]) Obviously, (A, ® id)A,1 = (id ® A,)A, 1.

(A ® id)A*(Cl © () = (id ® A A, (Cl © G2)

(1d®A)A ¢, we also have

(A, @id)A, ¢ = [¢)i®1@1+(d@ |- @ WA+ (([d®id® [-];)(A, @id)A
=1¢i®1@1+({[d®[-|; @A+ ([d®id® [-];)(d® A,)A
=[Cli®1®1+ (IdeA)(Id® []i)A.( = (d® A,)A[(];.

Hence, we get via induction that (A, ® id)A,¢ = (id ® A,)A,( for all { € .Z; and by
linearity we conclude that A, is coassociative.

€
€
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2. € is a counit. First of all, we have (¢ ® id)A,1 =¢(1)1 =
that (e ®1d)A,{ = ¢ = (id ® €)A,{ holds for some ¢ € (F;

(e @id)A, [¢(Ji = e([¢J)1 + []i(e @ id)A.C = [C]s

1= (id®e)A,1. If we assume
), we get

and

(id®e)A.[¢)i =e(M)[¢)i + (ld®@el i) A = [(]s,
since ¢|-|; = 0 by definition. Finally, if we assume that for some (1,(s € (%) we have
(e ®id)A,¢ = ¢ = (Id®e)A,(j, we get

ERIADA(GOGR)=G0G=>1d®e)A. (1O ()

e(C)e(G) = 01,6016 = d,a06 = (GO G)-
Hence, by induction the equation
(e®id)A,( =( = (ild®e)AC
holds for all ¢ € (#). The counit property (25) then follows via linearity.
3. ((F1),0,A,) is a bialgebra. We have A, (¢1 © (2) = A,G1 © A, ¢ for all (1,( € () and

A,1 =1®1 by definition of A,. Also, ¢ is an algebra homomorphism as we already saw.
Thus, ((Z1),®,A,) is a bialgebra.

4. ((F1),0,A,,8)) is a connected graded Hopf algebra. The fact that ({(F],))n is a grading

for the bialgebra ((#1),®,A,) is again easily shown by an induction over the recursive

definition of A,. It is also connected since (% o) = (1). By Theorem :2.20: we thus have

S 1¢i = —|¢)i — mg(id ®3$)A*LCJ1‘,

which has the advantage that here, we do not need to calculate the antipode values for forests
with more than one tree in order to get the antipode values for trees.

Theorem 3.51. (Based on Equation (51) [CK98], Equation (4) [F0i02], Section I1.9.3. [Man06],
Remark 2.9. [HK14]) A, admits the representation

Ac= > «CT)CeT, (3.24)
(C,T)eCuts(¢)
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where (Cuts (¢))cez, s a family of finite subsets of F1 x Fr recursively defined by

Cuts (1) := {(1,1)}, Cuts([¢)i) := {(C,[T]:)|(C,T) € Cuts (¢) } U{([¢)i, 1)},
Cuts ((1G2) = {(C1C2, T'T»)|(C1, Th) € Cuts (¢1) , (Ca, Tp) € Cuts (G2)}

and (cc(+,-))ces, s a family of functions (Cuts ({) — N)¢cez, recursively defined by

cr(1,1) =1, ¢, (C,[T]) :=cc(C,T),

CC1C2(C7 T) = Z € (Clle)Cﬁz (CQ,T2> :
(Cl,Tl)ECutS(Cl), (CQ,TZ)ECutS(CQ)Z
C1Co=C, ThT>=T
Proof. First of all, we have
Al1=181=c(L,1)11l= >  «(CT)CaT.
(C,T)eCuts(1)

AlCli=Cli@1+(de J)AL=cp (<) [Ciel+ > (C,T) Ca|T);

(C,T)eCuts(¢)

=i, ([Cla D) [Cli®1+ Y (G IT)) O |T);
(C, T)eCuts(¢)
= Z C\_Cﬁ(é’T) é@T
(C,T)eCuts(|¢]4)

A (L) =AG0A L= Z Z e, (CruTh) e, (Co Ty) CrCo & T4 T
(C1,T1)€eCuts(¢1) (C2,T2)eCuts(Cz)
- Z Z C<142(01027T1T2) 0102 ®T1T2

(Cl ,Tl)ECutS(Cl) (CQ ,Tg)ecuts(gz)

= Z C¢i¢a (Ca T) CxT.
(C,T)eCuts(C1(2)

The claim then follows inductively.

O

Referring to Section 2. [CK98], Section 4.1 [F0i02] and Section I1.9.3. [Man06], we may inter-
pret the elements of Cuts (¢) as the set of all cuts (C,T') of the forest ¢ into an upper part, the
crown C, and a lower part, the trunk T. Such cuts are called admissible cuts. The coefficient
c¢(C,T) then gives the number of possibilities to draw the cut (C,T') into a fixed planar drawing
of the forest . The special case (1,() € Cuts ({) is called the empty cut and ({,1) € Cuts (¢) is
called the full cut.

Theorem 3.52. S admits the representation

Sic= > (98, (3.25)

SeSplits(¢)
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where (Splits (¢))cez, is a family of finite subsets of Fr recursively defined by
Splits (1) := {1}, Splits (¢) := {CS|IT # ¢ : S € Splits (T), (C,T) € Cuts (¢) }

and (s¢(+))ces, is a family of functions (Splits ({) — Z)ceg, recursively defined by

s1(1):=1, S[CJi(S) = — Z ST(S)CLCL;(C’ T),
(C,T)eCuts([¢]:), Se€Splits(T):
T#|¢]i, CS=S
S<1C2(5> = Z SCl(Sl)Sﬁz(SQ)'
S1€Splits(¢1), S2€Splits(¢2):
S152=S

Proof.
1. Splits ((1¢2) = Splits (¢1) © Splits (¢2) for all (1,¢s € F;. We first have
Splits (1) ® Splits (¢) = {1} ® Splits (¢) = Splits (¢) = Splits (1)

for all { € %, in particular for all trees (.

Assuming the claim holds for all (1, (s € F#; with |(1]| + |(2| < n, we get for all 51,12 € F;
with |m1| 4 |n2| <n + 1 that

Splits (m1m2) = {CS|3T # mnz : S € Splits (T), (C,T) € Cuts (mn2) }

= {ClC25|E|T1T2 #mng : S € Splits (T1T5), (C1,T1) € Cuts (1),
(Ca,Ty) € Cuts (n2) }

= {C1C2519:|3Th T # mnz : Sy € Splits (T1), Sz € Splits (T7)
(C1,Th) € Cuts (1), (Co,Ts) € Cuts (12) }

={C1C28182|3Ty #m1, T # m2 = S1 € Splits (T1) , Sz € Splits (T3)
(C1,Th) € Cuts (11) , (Co,T») € Cuts (12) }

= Splits (1) © Splits (n2) ,

where in the third equality we used the inductive assumption with the fact that for (C,T) €
Cuts (¢), we have |T'| > |¢] if and only if T' = (. In order to see the C part of the fourth
equality, the case of either 77 = 1, or Ty = 72 needs further explanation. Without loss of
generality, assume T7 = 7y, then we have C; = 1 and since S; € Splits (T7) = Splits (11),
there is (C,Ty) € Cuts (1) and S] € Splits (T7) such that 7] # n; and C;S] = S1 = C151.
Hence, this case is indeed included in what comes after the fourth equality.

The claim then follows by induction over n.

2. & admits the given representation. First of all,

S1=1=s11)1= > sc(yn

n€Splits(1)
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Sl = —1¢)i —me([d ® S3AL )i = - > ¢, (C.T)COST

(C, T)eCuts([¢]q):
T .

i

=_ > > so(S) e (C,T)CS
(C,T)eCuts([¢]i): SeSplits(T)
T .

i

= Y > sp(S) e, (C,T)CS

Sesplits(|¢]s) (C,T)ECuts([¢]:), SESPlits(T):
T#|¢]:, CS=S

= Z SLCJi(g) S.
Sesplits(|¢]4)

SHGG) =86 o8 0G= Y D 56 (S1)5¢,(82) S1S
S1€Splits(¢1) S2€Splits(Cz)
= > > s, (S1) 8¢, (S2) S182 =
SeSplits(¢i¢2) 51€Splits(§1?§Sg‘gSplits(Cg):
= > > 56 (S1)s6,(S2)S= Y. se6(S)S.
SeSplits(¢1¢2) S1€Splits(¢1), S2€Splits(C2): SeSplits(¢1¢2)
S5152,=S

O

For a tree 7, each forest n, except 7 itself, in the set Splits (7) is achieved by multiplying all
the forests resulting from a finite sequence of consecutive admissible cuts of 7. The coefficient
s-(n) then gives the number of possibilities to draw such sequences of odd length into a fixed
planar drawing of the tree 7, minus the number of possibilities with even length, where the order
of the cuts in the sequence doesn’t count, each cut may only appear once in the sequence and
empty as well as full cuts are excluded. For the special case 7 € Splits (), we have s, (7) = —1.

3.5.3 Cocommutative dual Hopf algebra
Definition 3.53. Let +: (%) x (%) be the bilinear map generated by
CxT:= Y  «lCT)( CTeZ,
CGQI:
(C,T)eCuts(¢)

furthermore Ay : (Z1) — (Z1) ® (&) the linear map generated by

AgC = Z G®¢, (€Fr

€1,62E€F7:
C162=¢

and 82 : (F;) — (F) the linear map generated by

Seni= Y scm)¢ (e T

CEFr:
n€Splits(¢)
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Finally, let (-,-) : (%) x {(Z1) — R be bilinearly generated by

<<a77> = 5(,?7’ ¢,ne Fr.

As noted in Section 2.2 [HK14], the product x is often called Grossman-Larson product, where
the name refers to the paper [GL89].

Theorem 3.54. (Based on Section 2.2 [HK14]) ((Z1),*, A, S?) is the cocommutative dual
Hopf algebra of ((F1),©,A.,8)) under the duality pairing (-,-). It is connectedly graded by
((F1.0))n, too.

Proof.

1. m, is the dual operator of A,. For all C,T,n € %y, we have

m(CeT),m= >  «CT)in= >  c(C.T)éceorr
CeEFr: (C,T)eCuts(n)
(C,T)eCuts(¢)
= Y (CT)bodrg = Y @ T)(CeT,CaT)
(C,T)eCuts(n) (C,T)eCuts(n)

2. A, is the dual operator of mg. For all {,n1,m2 € %, we have

(AoCm @) = Z 0¢1m0¢a e = O¢mn, = (C;m ©12).

C1,62€F1:
C1¢2=¢

3. 8¢ is the dual operator of §}. For all n,( € .F;, we have

(Sem¢) = > sedoc= D, scoya= D scn) oy = n8)
e n’ €Splits(¢) n’ €Splits(¢)
7]€Splits(§')

4. ((F1),%x, Ao, S8Y) is the cocommutative dual Hopf algebra of ((F1),®,A,,S%). We ob-

viously have that u is the dual operator of € and vice versa. Since ((Z1),®,A,,S) is a

dual Hopf algebra with unit map u and counit e.

5. ((Fr1),*, A, 89) is graded. * is graded by ((F1n))n since |C| + |T| = |¢] for all { € F;
and (C,T) € Cuts (¢). A, is graded since |(1| 4 [(2| = [C1¢e| for all ¢1,( € Fr. SP is
graded since |S| = |n| for all n € %1 and S € Splits (n).

O

Obviously, Prim((#1), Ay) = (J1). Hence, GrLk({Z1)m, As) = exp,{(77)n. As noted in
Section 2.3 [HK14], this group is also called the Butcher group.
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3.5.4 Homomorphisms between words and forests

Based on the terminologies used in [HK14] and in [Reu93], we call
Wr={1}U{e;...,|n€N,i; € I}, e, F#epif a#b,

the set of words over the alphabet I, where 1 is called the empty word. Define |-| : W; — Ny
via |e;...i,,| == m and |1] := 0. The number |w| is called the length of the word w. Put
Wi = {w € Wy : |[w| < n}. We may then identify T((I)) with (W;) and T™((I)) with (W}') via
€iy.i, =€, ®--®e; . The duality pairing (-,-): W; x W — R generated by

<’LU1,U)2> = 5w1,w27 w1, W2 S WI

is then also an inner product.

Theorem 3.55. (Section 4.1 [HK14]) The linear operator
¢: (F1),0,A,,85) = (Wr),w, Ay, 57)
recursively generated by

p(1):=1, ¢([¢)i) =) ®ei, d(Ci1¢2) == d(C1) W P(C2) (3.26)

is a Hopf algebra homomorphism. The linear operator ¢ : (Wr), Ay) — ((Z1),A.) recursively
generated by . . .
P(1):=1, P(wRe;) = [dp(w)];

is a coalgebra monomorphism. We have qﬁé =id.

®
AgLiw=As(w®@e)=(w®Re) @1+ ZUH R (wy®er) =Liw®l+ (id® L)Ayw.
(w)

Since ¢pd1l = 1 and ¢pd(w @ ;) = ¢(|d(w)];) = dpPp(w) & e;, we get ¢pd = id inductively. In
particular, this shows that ¢ is injective.

1. ¢ is a Hopf algebra homomorphism. ¢ is obviously an algebra homomorphism by the third

For this, we first have
Aep(1)=A2:1=1®1=(¢pR¢)(1®1) = (¢ ®¢)A,L
Assuming we have Ay é(¢) = (¢ ® ¢)A,( for some ¢ € F, we get
(@2 ¢)AC)i= (0@ d)([¢li®1)+ (9@ ) (d® []i)A.C

=Lip(() @1+ (Id® L) (¢ @ ¢)A,( = Lip(() ® 1 + (id ® Li) A ()

=AsLid(¢) = Apo([C]0)-
Assuming we have Ay ¢(C1) = (p®¢)A, (1 and Ay ¢((2) = (9®¢)A, (2 for some (1, (2 € F7,
we get

Apd(C1¢2) = Apd(C1) WA P(C2) = (9 ® $)A.G LW (¢ ® ¢)A (2
= (0@ ) (AL OAG) = (6@ d)A.(C162)-
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2. ¢ is a coalgebra homomorphism. As always, A*qg(l) = (é ® q[A))AQ-@l follows immediately.
Assuming we have A, ¢(w) = (¢ ® ¢)Agw for some w € Wy, we get

~

Apwde)=A|pw)]; = [d(w)]; @1+ (d® [];) A, d(w)
=p(w®e) @1+ (d® [];)(¢ ® ¢)Agw
= (¢ ®¢)(Liwe1l)+ ($®

1

d
+ P)(id ® L) Asw = (¢ ® §) Ay Liw.

Theorem 3.56. (Lemma 4.9. [HK14] and its proof)
The map ¢ : ((F1),®,A,,8) = (T((T7)), W, Ay, 82) recursively linearly generated by

(1) =1, P([¢)i) =me(@ @ [J)AL ¥(G¢) = ¢(C) WY(G) (3.27)
is a Hopf algebra monomorphism.
Proof.

1. v is a Hopf algebra homomorphism. 1 is obviously an algebra homomorphism by the third

A1) =As1=101= YY) (1e1)= (¥ eY)A,1l
Assuming we have Azt (¢) = (¥ ® ¥)A,( for some ¢ € %, we get

Apth([¢)i) = Deme (¥ @ |]i)A.C =me(Ap @ u®id) (Y @ []i) A+ P([¢)) ®1
=my(P@Yeue [|)(A, @id)A,C+P([(]:) ®
=mg(Y @Y @ue [ ];)(id®A)AC+Y([¢)i) ®
=@ emg)(idey e [-];)(id® A)AC+ (¢ )

— We)de )AL +u(c) @1
= (Y @ Y)A,[(]i
Assuming we have Ay (¢1) = (Y ® ¥)A, (1 and Agh(Ce) = (Y @ Y)A, (2 for some (1, (2 €
F1, we get
Apth(G O C) = A () WAY(G) = (P @ )AG W (P @ YA
=W eY)(A.GOAG) =¥ RY)A(GO(G).

2. 9 is injective. See the proof of Lemma 4.9. [HK14].
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Chapter 4

Rough paths

4.1 Geometric rough paths

We shortly write Wy := Wy, 4y for all d € N. Define

.....

Gq := GrLE(T(R), Ay) = {g € T(R)[Aug = g @ g} = expg (La),

where
Lg := Prim(T(R%), Ay) = {l € T(R)|Aul =1 @1+ 1@ 1} = (R, ) ;-
as well as
i = GrLK"(T(R?),A,) = {g € T"(RY)|ALg = 7"(9 ® 9)} = 7" G4 = expg, (L),
where

i =Prim(T"(RY),A,) = {l e T"(R) ALl =1@1+1®1} = 7" (R, .
Define [|-[lgn : G§ — [0,00) by (Section 4 [HK14])

n

lgllan =" llmmloge (9)II"™,
m=1
where ||I|| ;== +/(l,1). Put ||"[|n := ||7n:]|n-
Definition 4.1. (Equation (4.3) and Definition 4.1. [HK14]) Let v € (0,1). A d-dimensional
~-Hélder weakly geometric rough path is a map X : [0,T] — G5 with X := 1 such that

1Xotllcs
sup ———= < 09,
s<t |t - 5|W
where X := X& 1@, X, = S2X, ®n Xy and n is the integer part of % The set of all such
maps X : [0,7] — G2 is denoted by R”([0,7],R%).
Remark 4.2. The word 'weakly’ comes from the fact that there is a notion of geometric rough

paths which is a bit stronger. For details on this distinction, see [F'V006].

We present three more definitions which will turn out to be equivalent.

47
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Definition 4.2.1. (Based on Equation (4.3) and Definition 4.1. [HK14]) Let v € (0,1). A d-
dimensional v-Holder weakly geometric rough path is a map X : [0,7] — G4 with X := 1 such
that _
7" Xt ||an
sup @ <o VneN,
s<t ‘t - 5|’y

where X, := X?‘l ® Xy = S¢X, ® X;. The set of all such maps X : [0,7] — Gg is denoted by
RY([0, T],R?).

Definition 4.2.2. (Definition 1.2. [HK14]) Let v € (0,1). A d-dimensional v-Holder weakly
geometric rough path is a map X : [0,T]?> — (W)™ such that

1. Xo(1) = 1 and Xy (wy W wy) = X (wy) X (wy) for all words wy,wy € W2 such that
|wi| + [wz] < m,

2. Xy = eq and X (w) = (Xou @ Xt ) Agw = ?w) X g (w") X (w?) for all words w € W,

3. sup, ‘I:Vis;‘(ﬁu{\l < oo for all words w € W2,
where n is the integer part of % Put X; := X;. The set of all such maps X : [0,7]2 — (W)*
is denoted by R([0, T],R%).
Definition 4.2.3. (Based on Definition 1.2. [HK14]) Let v € (0,1). A d-dimensional y-Holder
weakly geometric rough path is a map X : [0, T]> — (W)™ such that

1. Xst(l) =1 and Xst(wl W wg) = Xst(wl)f{st(wg) for all words wy,ws € Wy,
2. Xtt = ¢ and Xst(w) = (Xgu ® Xut)A®w = Z%ﬂ) Xsu(wl)xut(’u}2) for all words w € Wd,

3. sup, "t’f;‘ﬁﬁ”}‘l < oo for all words w € W,.

Put X, := X¢;. The set of all such maps X : [0,7]2 — (W,)" is denoted by R ([0, T], R%).

Theorem 4.3. Lyons’ Extension Theorem (Theorem 3.7 [LCLOT]) Let v € (0,1) and n be
the integer part of v~1. Let X : [0,T)?> — T®(RY) be such that moXs = 1 for all s,t € [0,T],
such that

Xsu®nXut:Xst Vs,unﬁé[O,T]

and such that

[ Xsullm

sup <oo ¥Yme{0,...,n}. (4.1)

s<t [u— s[™
Then, there is a unique extension X : [0,T])? — T(R?)) such that 7™ Xy = X for all s, t € [0,T),

such that ) B B
Xsu ® Xut = Xst Vs,u,t S [O,T] (42)

and such that

X,
sup [ Xsullm <oo Vm e Np.
s<t |u— s|™7

s,t € [0,T)?, then X € Gq for all 5,t € [0,T)>.
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Note that for our setting of paths in R?, this result is actually known for several years already,
but in [CDLL15], it is shown for the more general case of paths in a real Banach space.

Lemma 4.5. (Based on Proposition 4 [LV07])

1. For all k € N, there is a constant Cy, > 0 such that

[(w,9)] < Cluflglllss ¥n €N, ge G, we Wi\ {1},

2. For allm € N, there is a constant CJ, > 0 such that

lgllcn < Cl sup  [w, g)|Yl Vg e Gy
weWwm\{1}

Proof. (Based on the proof of Proposition 4 [L.V07])

1. Let n € Ny and = € L]] be arbitrary. For every m, k € N with m < n, we have

T (D SRR

veWI\{1}

:H Yo (@) (U @) 01 S B U
1)1,...,11,,,,61/\/5\{1}:
[v1]4...4|vm =k

< Z H|U1,x| < Nk sup H\Ui,x|

V1, Um €W\ {1} 1=1 V1, 0m EWEN{1}: =1
[v1 |4+ |vm |=k [v1 ][4 |vm|=k

SNmk su H|

1yeeslm€

l1+ +lm.7k

k

k

<N sup Hnexp@” Dy = Nowsllexps, (@)1,

1. 1'm

it +lm

where Ny, i, == [{v1,...,0m € WI\{1}||v1|+ -+ |vm| = k}| < 0o. Thus, for any w € Wj,
we get

|wl

n
1 1
®'Vl P— ®n
|(w, expg, ( E —' = g m'<w T T™)
m=0 m=0
|w] |w]
1 . N,
Knpm m,|w| . [w]
< 3 gl = 20 St s, (@l
m=0 m=0
——
=Cluw|

2. Let n € Ng and 1 +u € G} be arbitrary. For every m,k € N with m < n, we have, with
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Ny, i and similar first steps as above,

m

1/k 1/k
™l *< NYY O sup [Tloi, ul*/*

vy, 1)m€Wd\{1} i=1
|U1|+ Avm =k

k “ v vi|/k k v
<NME O swp [1C sw [/ V= N sup (o,
V1o um EWI\{1}: ;21 veWk\{1} vEWk\ {1}
|14+ |vm =k
Thus,
n k m 1, ®,m||1/k
1/k u="
||1+u||cn—2||log®n A+l =3 Z
k=1 k=1""m=
n k . o.m 1/k (0 n k 6. mul/k
< S0 ) > Pl
k‘:l m:l : :
n k
<D R sw M =cn s (1w,
k—1m—=1 veEWk\{1} vEWk\ {1}
=Cy,

where at (<)), we iteratively used the simple fact that (a-+b)'/* < a'/*4+b/% for all a,b > 0,
ke N.

O
The following theorem shows that the four definitions are indeed equivalent.

Theorem 4.6. Let v € (0,1) and n denote the integer part of % The maps

I} : R7([0,T),RY) — R([0,T],RY), X = X, X; := X,

17 : RY([0,T],RY) — RY([0,T],RY), X = X, X (w) := (w, Xy),

I : RY([0,T),RY) — RY([0, T],RY), X = X, X (w) == (w, Xy
are well-defined and bijective.

Proof.

wn()_(st) = Wn(SL-”XS ® )_(t) = WnSEUXS Qn X, = SL~“7rnXS On X = S2X, @n Xy,

||Xsth = Z <w7Xst>2 < \/ |Wd,m| CmHX

WEWd, m
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and

IXsell& < (Cr)™  sup [(w, Xso)| < (Cr)™ [IXst |-
weWn\{1}

I : RY([0,T],R%) — RY([0,T],R?) is well-defined. Let X € RY([0,T],R?%) be arbitrary.

Then, Xy := (-, Xy) € (WH* for all s,¢ € [0,T]. We have X (1) = (1,X,;) = 1 since

X5t € GY C 54<w;>- For all wy,we € W% with |w1| + |wa| < n we get, using the duality of
W and A,

v

X oo (w1 W awn) = {wy Wy, Xa) = (w1 @ wa, AyXer) L (w1 @ we, (Xt ® Xor))
= <’LU1 & w27XSt ® Xst> = <w17Xst><w27Xst> = Xst(wl)xst(wZ)u

where at () we used the fact that (w; ® we, ws ® wy) = 0 for all ws,ws € Wy such that
|ws| 4+ |ws| > n. Furthermore, using the duality of ® and Ay, we have for all w € W% that

N

: o o 3 :
Xst(w) = <w7 Xst> = <’U), Xsu Qn Xut>(:) <U}, ™ (Xsu & Xut)> = <w7 Xsu X Xut>
= <A®w7 Xsu ® Xut> = (Xsu oy Xut)Awa

where at (<)) we used the fact that (w,v) = 0 for all v € Wy such that |v| > n. Finaully7

. I is bijective. First of all, if )_(1, X? e 1:_{7([0, T],R%) with X' # X2, then there is t € [0, 7]

such that X} # X? and thus, there is w € W, such that (w, X{,) # (w, X3,). Thus, 1] is
injective.
Let now X € R7([0, 7], R%) be arbitrary. Put X, := Zwewg X (w)w. Then, we obviously

have X = (-, Xy for all s,t € [0,T]. For all wy,ws € W5 such that |wi| + |ws| < n, we
get, again by the duality of W and A,

(w1 @ wy, AyXr) = (w1 Wwa, Xyp) = Xt (wy W ws) = X (w1) X gt (w3)
= <w17Xst><w2>Xst> = <’U}1 & wa, Xst ® Xst>
= (w1 @ w, 7™ (Xgr @ Xit)).

Since (-,-) on (Wy) @ (Wy) restricted to [(Wa) ® (Wa)ln is again an inner product, we
conclude A th = (X4 @ X and together with (1,X) = X (1) = 1 therefore
Xt € G for all s,t € [0,T]. Furthermore, for all w € W1 and all s,u,t € [0,T], we have

<waXst> X ( ) = (Xsu ® Xut)A®w = <A®wvxsu X Xut> = <w; Xsu ® Xut>
<w (Xsu ® Xut)> = <w7 Xsu ®n Xut>-

Since (-,-) on (W) restricted to (WW5) is again an inner product, we conclude X, =
Xy @n Xyt Thus, putting X, := X, for all ¢ € [0,7] and using Xoo = En, We get

1 =X = Xot ®n Xio = Xi @n Xio

that indeed X € R”’([O T] Rd). This means we have shown that I is also surJectlve.



52

CHAPTER 4. ROUGH PATHS

I RY([0,T),RY) — R(0,T],R%) is well-defined. Let X € RY([0,T],R%) be arbitrary.

Then, X, = (-, X4) € W)™ for all s,t € [0,T]. We have Xst(l) = (1,X,) = 1 since
Xst € Ga € Y,y For all m € N and wi,wy € W' with |wi| + Jwa| < m we get, using
the duality of W and A,

Xt (wy Wwy) = (wy W U/2,Xst> = (w; W w277Tmet> =(w ® w27ALu7rmet>
= (w1 @ wa, T AL X)) = (w1 ® wo, ™ (Xsr @ X))
= <’LU1 & w27xst ® Xst> = <’lU1,X5t><’U)2, Xst> = Xst(wl)xst(w2)~

Furthermore, using the duality of ® and Ay, we have for all m € N and w € W]* that

A

XSt(w) = <’U), X3t> = <U}, XSU ® XUt> = <w7 ﬂ-m(Xsu ® Xut» = <U}, mesu ®m meut>
= (w, T (7" X gy @ T X y1)) = (w0, 7" Koy @ 7" Xy )
= <A®U}, Wm'Xsu X WmXut> = <A®U}7 Xsu %9 Xut) = (Xsu %) Xut)A®w.

. 1 is bijective. First of all, if X1, X2 € R7([0, T], R?) with X! # X2, then there is ¢ € [0, T]]

such that X} # X? and thus, there is w € W2 such that (w, X{,) # (w, X3,). Thus, I3 is
injective.
Let now X € R7([0,T],R%) be arbitrary. Put X, := D wew, X (w)w. Then, we obviously

have Xy = (+,Xg) for all s,¢ € [0,T]. For all m € N and wy,ws € W7 such that
|w1] + |wa| < m, we get, again by the duality of W and A,

(w1 @ wa, Ay Xg) = (w1 ®@ wa, T AL Xst) = (w1 @ wa, Aum™Xgp) = (w1 Wwe, 7" X)

= (w1 Wwa, Xy) = X (wy W wa) = Xgp(wr) X e (w2)
= <w17 X5t><w2a Xst> = <w1 ® wa, Xst ® Xst>

Since ((Wa) ® (Wa), (Wa) @ (Wa)n) is a pair of dual vector spaces under (-, -), we conclude

A

AuXy = X ® Xy and together with (1,X,;) = X (1) = 1 therefore X,; € Gy for all
s,t € [0,T]. Furthermore, for all m € N, w € WJ* and all s,u,t € [0,T], we have

A

(w, X o) = Xt (w) = (Xgu @ Xut) Agw = (Agw, Xgy @ Xoyy) = (Apw, 7™ Xy @ 7™ Xy
= <w7 7Tﬂlf{su ® 7Tﬂlj{ut> = <w7 7"JH(T‘-m)zb"u ® 77mXut)> = <w7 7ij(su ®7n 71Jnf(ut>
= <’LU7 Wm(Xsu ® Xut)> = <’LU, Xsu ®n Xut>

Since ((Wa), (Wa)m) is a pair of dual vector spaces under (-, -), we conclude X=X ®
Xyt Thus, putting X; := Xq; for all ¢t € [0,T] and using Xgg = &, we get
1= X0 = Xo © X0 = Xy © Xyo

that indeed X € R7([0,T],R?). This means we have shown that I is also surjective.

O
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Theorem 4.7. (Section 4.4 [Hail4])
Consider maps II : [0,T] — L((W4),C([0,T],R%)) and T : [0,T]> — L((Wa), (Wa)). They
satisfy the conditions

1. (IT1)(#) =1 and Tg(xy W xe) = Tgxy W Dgza for all s,t € [0,T), x1, 12 € (Wy),
2. Iy =1, Tys and T, Tyy = Dgp and Aglsy = (Dye ® id) Ay for all s,u,t € [0,T],

3. |(Mew)(t)] < |t — s and |Tgwlm < |t — 8|71 for all words w and m < |w|,
uniformly over all s,t € [0,T)

if and only if they are given by

&
(Mez)(t) == Xap(x), Tor = (Xps @ id)Agz = Xyo(w1)z2
(@)

for some geometric rough path X € fi”([O, T),RY). In this case, we furthermore have T gyw —w €
Wiy for all words w with |w| = n and Ty(z1 W 29) = i Ixs for all t € [0,T] and
xr1,To € <Wd>

Proof.
a) = : Let X 1= el'y,, where ¢ is the counit of (W,), Ag). We have
(T ) (@) = ()

for all ¢ € [0,T] since (II;1)(¢) = 1 and (I;w)(t) = 0 for all words w such that |w| > 0.
The latter is due to 3. and the continuity of IT;w. Hence, using 2. we get

X (2) = elyox = (ILDysz) (t) = (Mgz)(t).
Due to the counit property (25) and 2. it holds that
Ty = (e ®id)AyTg = (6 ®id)(Tg ®id)Ag = (eDy @ id)Ay = (Xps @ id)A .
1. and the fact that the counit is an algebra homomorphism imply
X ot (w1 Wws) = el (w1 Wwy) = &(Tyswi W ysws) = el pgwy el gwy = Xy (w1 )X g (w2),
while from 2. we conclude
X = el = eliulus = Xpalus = Xt (Xow @ 1d) Ay = (X ® Xt) A
Finally, using the fact that ||-||o = |e(-)], 3. leads to

Xt (w)| = [eTssw] = [Peswlo S [t — s

b) <= First of all, continuity of II;z for all s € [0,T] and all z € W, follows from the fact
that for all u € [0, T], we have
A ® A A ® A
lim (TT,2)(t) = lim X4 (x) = > Xul(x) lim X4(22) = (Z; X ou(z1)e(22)
xT

t—u
(z)

= Xsu(l') = (st)(u)7
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compute

® ®
Fy(zwy) = (X @id)Ag(zwy) =Y Y Kol W) (22 W ys)
@) ()
& & ) & &
=3 X)) Xis(y) (w2 W ys) = (ths(m)m) L (ths(yl)y2)
@ () (@) )
= Fstx L Fsty

Likewise,

(I (21 Wx2)) (1) = Xp(w1Wzs) = X (1) X e (22) = (Hez1) () (He22)(t) = (o1 axs)(t).

as well as, using coassociativity,
Toulut = (Xus @ id)Ag (Xpu ®@ id)Ag = (Xys @ id) (Xeu ® Ag) A
= (X @ KXo @1d) (id ® Ap)Ag = (Xpu @ Xys @ id)(Ag @ id)Ag
= (X4 ®@id)Ag =Ty
and similarly
AeTo = Ay (X @1d) Ay = (Xis @ id @ id)(id @ Ag) Ay = (Xis @ id @ id)(Ap @ id)Ag
= Iy ®id)Ag.
Since for every word w, there are words wi,wd, |wi| = |wi| = i such that Agw =
Zyﬂo w7 ® wi, we have

|wl

ITsewlm < 3 [Kes (w0} )|l =
=0

Xi, (i) Sl = s (43)

(L (w)(0)] = Kot (w)] S [t — 57!

for all words w. Finally,

® ®
Dow =Y Xys(wi)wy = Xyo(Dw + Ko (w)1+ Y Xy (w)w”
(w) (w)

®
=w+ X (w)1 4+ Xy (w)uw”,
()

thus Tyyw —w € (W} for all words w with |w| = n.
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4.2 Branched rough paths
Put F4 := F1,.. 4y and
gd = Gl”Lk(<yd>H7A®) = {g S <yd>H|A®g =49 ®g} = eXp*(<‘%>H)?

where
(Za)n = Prim((Fa)n, Ag) = {l € (Fa)ulAcl =1®1+1® 1},

as well as
9 = GrLk"((F3), Ag) ={g € (F)Acg =" (9 ® g)} = m"%a = exp, ((T"),

where
(T =Prim((F1), Ay) ={l e ()| Al =11+ ®1}.

Define [|-[|gr : ;' — [0,00) by (Remark 2.15. [HK14])

exp*n( Z bTT) = Z b, 1/171.

T gy regp

Furthermore, put ||z| := v/(z,z) for all x € (%y) and ||z||,, := ||mpx| for all x € (Fy)n.

Definition 4.8. (Definition 2.13., Remark 2.15. [HK14]) Let v € (0,1). A d-dimensional 7-
Holder branched rough path is a map X : [0,7] — ¢ with X¢ := 1 such that

1 Xstllgn
sup ———% < 00,
s<t |t - 5|’y

where X := X715, X; = SOX, %, X; and n is the integer part of % The set of all such
maps X : [0,7] — 92 is denoted by 27 ([0,T],R?).

Again, we present three more equivalent definitions.

Definition 4.8.1. (Based on Definition 2.13., Remark 2.15. [HK14]) Let v € (0,1). A d-
dimensional y-Holder branched rough path is a map X : [0,T] — ¥, with X := 1 such that

-
sup ——— <&
s<t |t - 5‘7

Vn eN,
where X := X371 x X; = SPX, x X¢. The set of all such maps X : [0,7] — ¥, is denoted by
27([0,T],R?).

Definition 4.8.2. (Definition 1.6. [HHK14]) Let v € (0,1). A d-dimensional v-Holder branched
rough path is a map X : [0,T]? — (Z2)* such that

1. Xo(1) = 1and X (¢1¢a) = Xt (1) Xt (o) for all forests 1, o € F2 such that [¢|+]Ca| <
n,

2. X4 = e and Xst(C) = (Xsu ® Xut)A*C = Z&) Xsu((l)f(ut((?) for all forests ¢ € Z7,

3. Supg4 “:isst‘(f&“ < oo for all forests ¢ € Z},
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where n is the integer part of % Put X, := X¢;. The set of all such maps X : [0,7]? — (FM
is denoted by 27([0,T], R%).

Definition 4.8.3. (Based on Definition 1.6. [HK14]) Let v € (0,1). A d-dimensional y-Holder
branched rough path is a map X : [0,T]?> — (%4)" such that

1. X (1) =1 and X (C1¢a) = Xgr(G1) Xt (C2) for all forests (1, G € Py,
2. Xy = ¢ and X1 () = (Xgu @ XA, = Z&) Koo (CHX 2 (C2) for all forests ¢ € .Fy,

3. Sup,_4 “i‘fg‘(ﬁzl‘ < oo for all forests ¢ € Fy.

Put X, := X¢;. The set of all such maps X : [0, T]2 — (%,)" is denoted by 27(]0,T],R%).
Lemma 4.9. (Based on Remark 2.15. [HK14])

1. For all k € N, there is a constant Cy, > 0 such that

(G < Crufllgllh YneN, ge9y, ¢ e Z3\ {1},

2. For allm € N, there is a constant C), > 0 such that

lglley <Ci sup (¢, q)|1! Vg egy
ceF\(1)

Proof. (Based on the proof of Proposition 4 [LV07])

1. Let n € Ny and z = Zreﬁd" b7 € (") be arbitrary. For every m,k € N with m < n, we
have

el = (3 oer)

TET\{1}

:H § le"'bTmTl*n"'*nTm

Ty Tm € TF\{1}:
[T+ A Tm =k

m
S sup ||T1 Kt Kp 7_m”k Z H|bﬂ

T T € 74 \ {1} TLyee oy Tm €T F\{1}: 1=1
Tl Al | =k 71l T | =K

k

=Dk
m
< Dm7kNm,k sup H'bﬂ
n,...,fmeﬂd’“\{l}: i=1
[T1] 4+ Tm | =k
m
< Dm,kNm,k sup Hexp*n ($)| é}n = Dm,kNm,kHeXp*n (x)Hgky;,
liyeslm €N 225 d

Littlm=k ‘=
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where Ny, i o= [{71,..., 7 € ZF\{1}||71]+ -+ |7m| = k}| < 0o. Thus, for any ¢ € .F7,

we get
€] 1
‘C,GXP*H ’_ C’ o m > = Z E<C’Tr\§\x*nm>
m=0
1q
< Z—nx*nﬂhq < Z ‘4‘ L flexp,., (2)l5h-

=Ci¢|
2. Let n € Ng and u € govn) be arbitrary. For every m,k € N with m < n, we have, with

Dy, = sup 1€ %n -+ %n Conllis
CiyeCm €EFF\{1}:
[C1]++[Cm|=k

N = [{G,- - Cm € FE\A{1M|G] + -+ + |¢n| = k}| < oo and similar first steps as

above,
m k k k
|l ||1/ <D1/ N:n/k sup HK ‘1/k
%’_’Ch CmEFY \{1} i=1
N N S
k . Cil/k k
<R1/ sup H( sup |<<au>|1/|<|)| '/ ZR;{J€ sup (¢, w)| M1l
417---,<m69§\{1}: i=1 CEFR\{1} ceFM\{1}
ICal++[Cm =k
Thus,
1k n k m 1 urnm 1/k
11+ ullgr = lelog*n L+u)ll/"=>" Z
k=1 k=1""m=1 k
mi \/F (<>) s
< Z(Z L) e
m= k=1m=1
<ZZ Qk/ Rmk sup C ’U,>‘1/‘d :O;L sup |<<71+u>|1/|4|,
k=1m=1 CeFh\{1} CeFkE\(1}

:=C1,

where at (<)), we iteratively used the simple fact that (a+b)'/* < a'/*4b'/* for all a,b > 0,
keN.

O

For each v € (0,1), let g, : (%4) — R be the linear map recursively generated by ¢,({) :=1
for all ¢ € %4 such that |(| < 1/v and

4 () == 27|Q qu ") ay(Q1G) = ¢4(C1)a4(C2)

for all ¢, (1, € Fy such that |¢| > 1/ and [¢1(2| > 1/v (Equation (34) [Gubl0]).
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Theorem 4.10. Gubinelli’s Extension Theorem (Theorem 7.3. [Gubl0]) For v € (0,1), let
X € 27([0,T),R%) and B € [0,1], A > 0 such that

X,
supM < BAllg,(r) vre P
s<t ‘t - 5|7|T|

Then, there is an extension X € @W[O,T],Rd) such that Xst“g;) = X, for all s,t € [0,T],
where n is the integer part of v, and

X,
sup Xl < BA‘quA,(T) V1 e Ty
s<t |t — S|’Y|T‘

Lemma 4.11. If for an X € %£7([0,T],R%) there exists an extension X € %7 ([0, T],RY) such
that X = X, then this extension is unique.

Proof. Assume for X!, X2 € %7([0,T],R?), we have 7"X! = X = 7™X? for some m > n.
Put A; := log*erl(ﬂm*'lX%), a; ;= Ay — A, By = log*mﬂ(ﬂ'm'*'l)(%) and b; := By — ™ B;.

Then, since 7™ Ay *pmy1 a = 0 due to ay € (Tgms1) and €4y = 0, we have Armh
(7™ Ay)*»+1* for k > 1 and thus

o HIXe = exp,, ., (4y) = exp,, ., (7™ Ay) + aq.

Since both 7" A, and as are primitive elements, we have S¢ exp, . (7™ A;) =exp,,  (—7"A;)
and SPas = —as, and thus

am XL = 2T X x SOX,) = 7T X kg1 SOTTEX
= (exp,,,,, (T As) + ar) xm+1 S(exp,, (7" As) + as)
(expy, . (7™ Ar) + at) *mi1 (exp,, (=7 Ag) — as)
m+1 m—+1

=exp,, ., (7™ At) *mt1 exp,, ., (—7™Ag) + ay — as

Likewise, 7" t1X2, = exp, (7" Bi) *mi1 exp,, ., (7" — Bs) + by — bs. Since

" A, = 7 og, | (<MK = log,, (+XL) = log,,, (+"2) = 77 o, (x"1XE)
_ ﬂ_th7
we have - -
WerlXit - 7Tm+1X§t =a;+bs —as — by.

[(C; (ar = b) — (as — bs))|
<t [t — s|(mt1)

<oo V(€ ZFimt,

thus a — b is constant since (m + 1)y > (n + 1)y > 1, and hence 7™ X!, = 7mF1X2,.
By inductive application of the argumentation above, we get X! = X?2.

Theorem 4.12. Let v € (0,1) and n denote the integer part of % The maps
1 20, T),RY) — 27([0,T],RY), X = X, X := 7Ky,
I 27([0,T],RY) — 27 ([0, T],RY), X = X, Xy (y) := (y, X4,
I3 27([0,T),RY) — 27(10, T, RY), X = X, Xa(y) := (5, Xor)

are well-defined and bijective.
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Proof. The proof that the functions I; and I are Well deﬁned and bijective is completely anal-

7Tn(jcsi&) = WH(S*@XS * Xt) = WHSSXS *n ant = S,?ans *n ant = S,?Xe *n Xta

X e %7([0,T],Rd) be arbitrary. Then, X := I (X) € %’7([0 T] Rd) is given by X (y) =
(y, Xg) for all y € (FF), s,t € [0,T]. Since T is a finite set, for any B € (0, 1] there is
some A > 0 such that

SupM AITI J(T) VTe TP

s<t |t — 3|'Y|7'| -

X (y) = (y,Xst) for all y € (%), s,t € [0, T]. Then, again for all s,t € [O,T],
I;(Xst) = ’/TnXst =7" Z <Ca Xst>< =" Z Xst(C)C = Z Xst(C)C = Z Xst(C)C
CEFa CEFa cezn ceFn

= Z <CaXst>C = Xst-

(eF?

Since X € 27 ([0, T], R?) was arbitrary, we have proven that I] is surjective.

Putting ||| := +/({,¢) and |[C]|m := ||mm (]|, we have the following.

Theorem 4.13. (Based on Section 4.4 [Hail4])
Consider maps 11 : [0,T] = L((Z4), C([0,T],R)) and T : [0,T]* — L((Fa), (Za)). They satisfy

the conditions
1. (Ts(1))(t) =1 and Ts(z1 © w2) = Lspwy © Lspma for all s,t € [0,T], x1, 22 € (Fq),
2. TI, = Ty and TyuTuy = Tsy and ATy, = (T @ id)A, for all s,u, € [0,T),

3 (M (O] < |t — sl and |DsiCllm < [t — s[PUSI=™) for all forests ¢ and m < |(],
uniformly over all s,t € [0,T]

if and only if they are given by

A

(Ms(2))(t) = Xap(x), Tow = (Xps @ id)A,x = Kpg(w1)2
(@)

for some branched rough path X € %" [0,T],RY). In this case, we furthermore have I's;( — ( €
(F77YY for all forests ¢ with || = n and y(v1 © x2) = a1z for all t € [0,7T] and
xr1,To € <<§d>
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Tolllm < > e CT) Kes(ONTm = > (CT) [Xus(O)]
(C,T)eCuts(¢) (C, T)eCuts(€):
ICl=[¢l—m

<t - s|7(|4‘_m).
O

It turns out that weakly geometric rough paths can be seen as a special kind of branched
rough paths satisfying an additional condition, which is nothing but the integration by parts
rule. This is made precise by the following result, which is due to [HK14]. We added a proof for
the ’conversely’ part which was just stated as an observation there.

Let ¢ : (Z4) — (W4) be the Hopf algebra homomorphism and ¢ : (W;) — () be the

Theorem 4.14. (Section 4.1, Proposition 4.6. [HK14]) For every weakly geometric rough path
X8 € RJ([0,T],R?), there is a branched rough path XP € %] ([0,T],R%) given by

th(x) = X%f(d)(x))
X2 can be recovered from xXb by 5 o
X5 (x) = X2y ((2)).
Conversely, for every branched rough path X?' € %5 (10,T),RY) with the additional property that

X (x) =0 Vze (FP)Nkerg,s,tel0,T], (4.4)

there is a weakly geometric rough path X& € RJ([0,T],R%) given by

XE,(2) := X2 (J(x)).

XP" can be recovered from xe' by

XV (z) = X5 (6(x)).

Proof. Again, put n := L%J

1. Let X& € RJ([0,T],R?) and X" defined as above. The algebraic conditions 1. and 2. of

Xb X
aup KOL X (0(0)]
s<t |t—s|7|4| s<t |t_s|7|C\

<oo V(e (FD

........

2. Let X* € %7 (]0,T],RY) be such that it satisfies the additional property and let X&' be

defined as above. We have that qz@(wl) ® quS(wg) — (;AS(wl LW we) € ker ¢ for all wy,ws € Wy,
since

~ ~

3((w1) © d(wz) — dwr Wws)) = G(d(w1) © G(wz)) — ¢(wy L ws)
= ¢ (w1) W pp(wa) — wy LW wy = 0.
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........

........

|XE, (w)| X5 ($(w))]
sup ————— =sup ———————— < Ywe W?
war |t—sPiel — & spidtwr S0 7Y W)

We also have that ¢é(x) — x € ker ¢ for all = € (F,), since

d(00(x) — x) = ¢pdo(z) — d(z) = d(x) — P(z) = 0.
Thus,

~ N~ 7

XY (2) = XY (¢ (2)) = X&' (4(z)) Yz € ().
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Chapter 5

Regularity structures

5.1 General concept

Definition 5.1. (Definition 3.1 [Hailb], Definition 2.1 [Hail4], Definition 13.1 [FHI4])
Let

1. A C R be bounded from below and locally finite, i.e. AN (—o0,r) finite for all r € R,

2. (Ta)aeca be a family of non-trivial (i.e. dim7T, # 0 Va € A) Banach spaces over R with
norms (||-[|a)aca and let T := @, 4 T be endowed with the norm [|-[| := >°_c 4l|Tala;
where 7, is the canonical projection on T,

3. G C L(T,T) be a group of invertible continuous linear operators with composition law, i.e.
ide G, NI, €Gand I'"' € G for all I, I, I € G, with the property that

I't—zeTea:= P Tp VI€GacAzel, (5.1)
BEA: B<a

Then, T := (A, T, G) is called a regularity structure with indez set A, model space T and structure
group G.

We say that a regularity structure T = (AT, G’)_is a sub regularity structure of a regularity
structure 7 = (A, T,G) if A C A, G C G and T is a closed subspace of T such that T,

is a sub Banach space of T, for all @« € A (loosely based on Section 2.1 [Hail4]). We put
T>0 = @pea. p>a Ip and shortly write ||-||o also for the seminorms [|mq-[lo on 7.

Remark 5.2. For each A and (T, ) fulfilling Properties 1. and 2. there is a maximal structure
group given by

G ={Tre LT T [x—x €T Vae Ax eT,},

which contains all possible choices of structure groups. Hence, choosing a structure group for a
given model space means choosing certain additional properties that the elements have to fulfill,
e.g. multiplicity with respect to a given product on T.

Remark 5.3. All of the examples of regularity structures (A4,7T,G) that we present later will
satisfy the additional property that 0 € A and that there is a unique element 1 € T such that
llo=1and I't =1 for all I" € G.

63
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The original definition of a regularity structure in [Hail4] contained an even stronger require-
ment for the subspace Tp, namely that Ty = (1), where 1 is such that ||1|jp = 1 and I'l = 1 for

Definition 5.4. (Definition 2.17 [Hail4]) Let T = (A, T, G) be a regularity structure and (S, d)
be a metric space. A map I': § x S — G is called a G—bz’mapﬁ_I_i over S if

1. I'ypy =id for all x € S,
2. Tyyl'y, =T, forall z,y,2 € S,
3. For every compact subset & C S and every 8 € A, there is a constant Cg 3 such that

ITzyallo< Cgrp |a||d(:1c,y)5_9 Vz,y€ R,ae€Ts,0<p.

Definition 5.5. For a regularity structure 7 = (A4,T,G), let V be a subspace of T such that
Vo :=V NT, is a (possibly {0}) closed subspace of T, for all &« € A. Then, V is called a sector
of T if V is invariant under G, i.e.

I'vCcVv VIed.

We call the sector function-like if V,, = {0} for all o € A with a < 0 and Vj = (1), where 1 is
some element such that I'l =1 for all I" € G.

Definition 5.6. (Definition 3.1 [Hail4]) For a given regularity structure (A, T, G), a G-bimap T’
over (S,d), v > min A, a closed subset M C S and a sector V of (A, T, G), the space of modelled
distributions DI(M, V) of order ~y consists of all functions f : M — V. such that

£ () = Lay f(y)lla
I £l :==supsup| f(z)« + sup  sup
R TER a<ly zyeR:  a<y d(z,y)'y—a
0<d(z,y)<1

< 0

for all compact & C M. We shortly write D := DL(S,T).
The following definition is inspired by the definition of automorphisms in Section 2.4 [Hail4].

Definition 5.7. Let 7 = (A,T,G) and T = (A, T,G) be regularity structures. Furthermore,
let ¢ : T'— T be a continuous linear map such that T C Tg forall g € Aand ¢ : G — G be
a group homomorphism. If

1. I'p=py(I') VI €,
2. for every G-bimap T' the function (z,y) — 9(I'y,) is a G-bimap,

then ¢ is called a model space morphism and 1 is called a structure group morphism. The pair
(¢,v) is called a regularity structure morphism from 7" to 7. The morphisms ¢, 1 and (¢,v)
are called homogeneous if ¢Tg C Tj.

For x € R? and § > 0 let &% € L(7(R?),.#(R?)) be given by
(Shu)(y) =6~ u(0 (y — 2)).

Furthermore, for any » € N, let B"(R?) denote the set of all u € .#(R?) compactly supported in
B(0,1) such that |jul|c- < 1.

IThis nonstandard terminology just used for the purpose of this thesis.
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Definition 5.8. (Definition 2.17 [Hail4]) Let 7 = (A, T, G) be a regularity structure, I : R? —
L(T,"(R?)) be a function and T' be a G-bimap over R?. Furthermore, let 7 be the smallest
integer such that r > |min A|. We call (II,T") a model for 7 on R? if

1. I Ly =11, for all z,y € R?,
2. For every compact subset & C R? and every 3 € A, there is a constant Cg 3 such that
|(Mpa)(S2u)| < C’Jq7/3||a||5ﬁ Vo€ & 0¢€(0,1],a€ Ty, uc B (RY.

IT,1 is the constant one function for all z € R<.

Definition 5.9. (Definition 14.3 [F'H14], based on Definition 4.1 and Definition 4.6 [Hail4]) Let
V,V be two sectors of a regularity structure 7 = (A, T,G). A product on V x V is a continuous
bilinear map ¢ : V x V — T such that

1. VooV CThqp,
2. T(wov)=Tvoelv VI €G,veV,veV.

Theorem 5.10. (Section 4.2 and Theorem 4.16 [Hail4], Section 14.2 and Proposition 14.7.

[FH14]) Let V be a function-like sector of a regularity structure T = (A, T,G) with 9 being the

lowest non-zero homogeneity of V and ¢ a product on VXV such that VoV C V. Furthermore,

let v > 0, h € CK(R,R) for some k € N with k > v/9 + 1 and T' a G-bimap over R%. Then,
+ (hoF),, where

[v/?]
RO (FY(x
(ho Pl = X w, ) (pa) — P @),
0:=1 and F'(2)1 := moF(x), is a continuous map from D} into itself. More precisely, for

any compact K C R? and any D > 0, there is a Cg,p > 0 such that
I(hoF)y —(hoG)yll, 4 < CapllF =G, s YF.GeDr: |F], «+ G, & <
Definition 5.11. (Section 2.2 and Definition 3.7 [Hail4])

1. For n € Ny and a € (0,1], let C***(R?) denote those functions in C(RY,R) which are n
times differentiable and whose n-th derivative is Holder continuous with exponent a. We
endow C"+*(R%) with the family of seminorms

(n) _ (n)
1fllensas = sup &) =T +ZWWM

eyes |z —yll* ‘ zew
indexed by all compact & C R%.
2. Put C°(RY) := £ (R4, R).

loc

3. Forn € Nand a € [0,1), let C*~"(R?) denote those distributions o € D’(R?) such that for
cach £ ¢ R%, we have

o(&u)
lollca—nq:= sup sup sup Sa—n
weBn (R4) z€R 6€(0,1]

We endow C*~"(R?) with this family of seminorms.
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Theorem 5.12. Reconstruction Theorem (Theorem 3.10 and Corollary [Hail4]) Let (II,T)
be a model over R?® for a regularity structure T = (A,T,G) and v > o := min A. Then, there is
a continuous linear map R : D — C* (R, R) with the property that for every compact & C R?
there is a constant Cg > 0 such that

|(RF — 11, F())(&u)| < Cg||F|| o067 VYxe& de (0,1, FeDlucB (RY), (52

B(x,1). Such a map is called a reconstruction map. We furthermore have

where & = J,cq
that for every compact & C R? there is a C; such that

IR*Fllee.s < CRIF

v,R

If v > 0, then the reconstruction map is unique and for each F € D}, the distribution RF is
uniquely characterized by equation (52)

Theorem 5.13. (Special case of Proposition 3.28 [Haild]) Let V' be a function-like sector of a
reqularity structure T = (A, T, G) with ¥ being the lowest non-zero homogeneity of V. Let (II,T)
be a model for T on R% such that 11,1 is the constant one function for all x € R?. Then, for
v > 9, RY maps DL(V) into C*(R?) and we have

(R7F)(z)1 = moF(z) VF e DLV).
In particular, we have ,a € C*(RY) for alla € V.

Note that the ’in particular’ part indeed follows from the general statement since I'.,a € DL(V)
for all  large enough and
M,a—T,T,a=0 YyeR?

thus ,a = R (T za) € C?(R?) since the reconstruction of a modeled distribution is characterized

5.2 Construction of a regularity structure based on a Hopf
algebra

5.2.1 General construction

We closely follow Section 4.3 [Hail4] in this subsection. Let (H, ¢, A, S) be a locally finite dimen-
sional connected graded Hopf algebra over R whose grading differentiates into a d-dimensional

grading
H= (D H,
neNg
for some d € N, i.e.

Hn <>[_Im g Hn+ma AHn g @ Hk & Hn—ka SHn g Hn Vn,m € Ng
0<k<n

With locally finite dimensional we mean that H,, is finite dimensional for all n € NZ. The notion

by putting

nENg: |n|=1
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Now, choose scaling factors o = (a;)L,, where a; € R*, and put (a,n) := Zle a;n; for all
n € Nd. Then, we may introduce the index set A and the model space T as

A= J{{an)}, 7= P H., T:=EF7.
neNg neNg: (a,ny= VEA

Let G denote the set of characters on T = H, i.e.

G:={ge Hg(zoy) =g(x)g(y)Va,y € H}.

G is a group together with the convolution product * on H* = L(H,R). Then, define linear
maps T/" : H* — L(H, H) by -
I = (g®id)A

and

Iy = (id® g)A.
In both cases, we have the following.

Theorem 5.14. (Based on Section 4.3 [Hail4]) (A, T, f‘lg) and (A, T, 1:‘;) are reqularity structures
with minA = 0. T': G — fé is a group antiisomorphism and T" : G — l:‘g 18 a group
isomorphism. The structure groups have the characterizations

[, = {I'€ L(H,H)|I'm, = m,(I' ® '), AT = (I' ®id)A}

Tesp. ~
L={leLH H)|I'm,=m, (I ®T), Al = (id® I'|A}.

In particular, ¢ is a product on the whole T X T.

Proof. (Based on Section 4.3 [Hail4]) We only show the case of T', the other case is completely
analogous.

1. T! is a group antiisomorphism. For all g, h € G, we have
=1l . . . . . .
L, =(g@id)A(h® 1d)A_ = (h®g®id)(id® A)A = (h® ¢ ®id)(A ®id)A
= ((h*g)®id)A =T},,.

2. (A,T,T%) is a regularity structure. The only thing left to show is (5.1). Let g € G, n € N§
and x € H,, be arbitrary. Then, = € T\, ,y and by the multi grading of A,

f‘lgm —z=(gQidAz—z=((9g —¢) ®id)Az € @ Hy =Tiam,

m<n
since (g — €)1 = 0 because g is in G.
3. The given characterization of flG holds. First of all, for any g € G, we have
f;mo = (g ®id)Am, = (¢ ® id)(m, @ m,)T1324(A R A) = m, (g ® g ® id ® id)T1324(A ® A)
=m,(g®id®g®id)(A®A) =m,(I) @ T).
and

S . _ . SNy _ . . . Pl o
Al = A(g®id)A = (g ®@id ®id)(id ® A)A = (¢ ®id ® id)(A ® id)A = (T, ® id)A.
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)

Thus, we have shown the 'C’ part of the characterization. To show the 'D’ part, let
I' e L(H, H) such that I'm, = m,(I"® ') and A"’ = (I" ®id) A be arbitrary. Put h:=e[l.
Then,

hm,=el'm, =em,(I'@ TN =(c@e)(I’'®I)=(h®h),

which implies that h € G. Also,
I'=(¢®id)AT = (¢ ®id)(I' ®id)A = (h®id)A =T}

Hence, the ’D’ part is also shown.

5.2.2 Polynomial case

This subsection is a more explicit formulation of what is described mostly in words in Remark
4.19 [Hail4]. Considering the polynomial Hopf algebra Py, we have an obvious d-dimensional
grading given by ((X")),cna. But, as its natural to choose all scaling factors a; = 1, we get
A=Ngand T'= @, 4 Tx with T}, = Pg. We identify P,* with the space of formal series of
differential operators (Dg)r1 via the duality pairing (3.3), writing

(Dl(p) := (D, p)
for D € (Dd)n, p € Py.

Fon X7 = (07| @ 1)AX™ = 3 <";> (6X!)(0) X! = {“"T!"”an ifn < m
0STom m 0 if n€m
=o"X"
Thus, for a formal series D of differential operators, D € (D) C L(Pg, Pag), we have
Lp = D.
Since the group of characters G' can be written as
G = {(DI|D € exp,(Da,)},
we may write the structure group as
T = exp,(Da,1),

i.e. the structure group consists of the composition exponentials of first order differential opera-

tors. Since
d

exp, (D ai0i) = exp,(a101) - - - exp, (agda)
i=1
due to commutativity of (Dg, o),

St k
ar

exp, (a;0)X; = ) ﬁ@ij =X; +dija;
k=0

and I'(z ey) =Tz e 'y for all ' € Ty, we have
d d
eXPo(Z a;0;)X" = H(Xz +a;)" = (X+a)" VaecR%
i=1 i=1
i.e. the structure group I'¢ is nothing but the group of translations of the d-dimensional polyno-
mials.
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5.2.3 Connes-Kreimer Hopf algebra case

This section is basically a short formulation of what was suggested in Remark 4.25 [Hail4].
Starting from the Hopf algebra ((.Z4),®,A,,S)), the one dimensional grading and the scaling
factor 7, we get a regularity structure 71 = (Af, T* f‘f@), where 4 is the group of characters on

(F4), A = YNy and of course T = (.%,;) with Tf = (Z4k). The group £ can be identified

with GrLk({.%,), A,) via Theorem :3.34; The map Ff is then recursively given by

Tl =1, Tylcli=g([¢J)1+ [Nl TG0 G) =Tyh o TG
Let .#{([0,T]) denote those models (II,T) € .#{(R) such that I'y; = id for s,¢ € (—0c0,0] and
for s,t € [T, 0).

Theorem 5.15. (Based on Section 4.4 [Haild]) There is a bijective map I : %" (R,RY) —
AME([0,T)) which maps a branched rough path X to the unique model (II,T) € .#£([0,T]) such
that

(Mez)(t) = Xar(2), Tor:=(Xps @id)Az = Xy(wr)ra Vs, t€[0,T], z € (Fg) (5.3)
(@)

(just put Iyy = Ty if s < 0 and I'yy =Ty if s > T) Furthermore, there is a unique II on R
such that (53) holds and such that II; = II;I';s for s,t € R, in particular II; = Il if s < 0 and
II, = Iy if s > T. For this II and for every k € Ny, there is a C), > 0 such that

(OO < Crlt = s V(€ Fap, t,5 € R
Thus, putting f, := II,¢ for some ( € %y, we get
|(T,) (&%u) ‘ /fs Lt —s)) dt‘
< Cg)o°T

/fs (s +ot)u dt‘ g/R\fs(s+5t)||u(t)|dt

for all s € R and ¢ € (0,1]. By linearity and local finite dimensionality, the analytic condition for
IT in Definition 5.8 of a model follows. The map I is therefore well-defined. It is also injective,
since Xy = (11, )( ) for all s,t € [0, T] It only remains to show SurJect1V1ty

.....

isaCp >0 such that

(IO @) = I(HtFtsC)(t) = [TesCllo < Cigllt - SIV'CV

D

Definition 5.16. (Reformulation of Definition 3.2. [HK14]) For a branched rough path X €
%7 ([0, T),R%), the model (I,T) = I(X) and n = |y, we call DR the space of controlled
rough paths of X.

Applying Theorem 5.10: to D" yields exactly the one-dimensional case of the composition

.......

formula for controlled rough paths given in Equation (3.8) [HK14].
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5.2.4 Shuffle-deconcatenation Hopf algebra case

The same can be done for the Hopf algebra ((Wy), W, Ay, S®), yielding a regularity structure
TV = (AW,TW,fVéW), where GV denotes the group of characters on (W;) and where again
AY =Ny and TV = (Wy) with T} = (Wqy). This structure was already discussed in detail in
Section 4.4 [Hail4].

Here, we have the recursion

ry1r=1, f“;’(w ®e;) =glw®e)l + f“;’w ® e;.

5.3 Rough path structures revisited

5.3.1 Motivation

Another way to construct regularity structures for rough paths is to perform an abstract fixed
point iteration in the spirit of Section 15.2 [FHI4]. The problem we look at is, for smooth
functions f; and drivers z* with 2} =0 for ¢ <0,

d
dye =Y fily)dz}
i=1

Putting & := 4%, this may formally be reformulated as

d

o= fily)

i=1

or, as a formal integral equation,

d + )
P =; /0 Fi(g)él dt.

Introducing the integration kernel K := x[9 o), We have

d

Yt — Yo = lK* (Zfi(y)fi)] (t).

i=1
This may be translated to an abstract equation

d
Y =yl+KY and Y =) fi(Y)Z, (5.4)
i=1

for modeled distributions Y and Y. The linear operator K acting on certain modeled distributions
corresponds to the convolution with the kernel K. It will turn out that C can be written as

(KF)(t) = TF(t) + (K « RF)(t)1
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for some linear operator Z acting on a sector of the model space which we want to introduce. In

Z fi (Yl) (Y o Yl)kEZ

k!
k=0

and later cut off that infinite series at some level. Let therefore ¥ = |J;_, Y, be the set of
symbols necessary to describe Y for any family of smooth functions ( )i, and Y = Uoe o Vn
the set of symbols necessary to describe Y. Starting from )y = {1}, we obtain the sets by
iteratively applying (54) and collecting the symbols we have not yet included, i.e.

Vo ={Zili € I}, W= {ZE)ie I},

j}n = {Cl t CmEz|m S N7 Cj S y’ru 1€ I}a yn+l = {I(C)|C S yn}a
where T := NN [1,d]. Obviously, we may identify

via
Z(r T Zi) = |11 T

5.3.2 Branched rough paths structure

Thus, as a model space, we put

I
S
3]
S

I
=
S
S
S

P-
K
m

Tb

with homogenities
=0, [El=v=1 |n-mmEl=nl+-+|mml+v-1, [[Cli]l = |Z(¢E)| = [¢| +~
and hence index set
AP := 4Ny U (9N — 1).
T® then can be turned into a comodule of ({Z4),A,) via

AP TP 5 (Fg) @ T, APCE; =) G @GS, A[¢)i=A.[¢; (5.5)
©

which allows us to define the action of some g € (%;)" on TP as
=b . - Y AD
Iy = (g®id)A”. (5.6)

Denoting the group of characters on (#,) as %, we get a regularity structure 7P := (A, TP T,)
for branched rough paths. It is some kind of a generalisation of the rough paths structure given in
Definition 13.5. [FHI14] for the case of v € (1/3,1/2], though they work with a finite dimensional
model space there, which would also be possible here via truncation.
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Theorem 5.17. T is a regularity structure. (¥) and (V) are sectors of TP.

and (V) to (Fq) ® (}), they are indeed sectors.

There is an obvious group isomorphism ) given by ’(/)(1:‘2) = fs, which is also a structure
group morphism. It can be expanded to an injective map

& : M (R) = 4" (R), S(ILT) := (o(I), (T))
via .
We have that
O(A{(R)) = {(ILT) € A (R)| G1Lo 13y = IO} =: M3 (R),
where 8 € L((), ())) is generated by

Note that OI'[(yy = T'0 for all I" in ['%. The models in .#Z2 (R) are called admissible models.

5.3.3 Integration against the kernel and solving RDEs

We introduce Z € L((Y), (})) as
Z(CEi) = [¢]i-

Theorem 5.18. Z : (Y) — () is an abstract integration map of order 1 in the sense of
Definition 5.7 [Hail4] since

() ZV)a € V)at1,
(ii) Ila — I'Ta € (1) for every a € (V) and I € T'Y,.

Proof. We have
IZ(CE)| = Il = [Cl + v = [¢Eil +1

and
ITy(CEi) = ToZ(¢Ei) = Z[(T¢)=:] —Tyl¢)i = [Ty¢li — g([¢))1 — [Ty¢li = —g([¢Ja)1.
In the following, let ® : () x (¥) — () be generated by
TOKE) =108 Vre yuUu{l}, (e Fy,ie{l,...,d}.

Theorem 5.19. A linear map I’ € L(T",T"®) is in fgg if and only if all of the following properties
are satisfied:

i) e —x €T®, foralla e A and x € TP,
() <« [}
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(ii) I'(Y) € (Y) and T'(Y) € (V),
(iii) ITb — I'Th € (1) for every b € (V),
(i) Ta® b= T'(a®b) for all a € (Y) and b € (V).
Proof.
1. Let I' € Fb be arbltrary Let g € & be such that F Fb Propertlee (i) and (ii) hold by

riro CEZ-) = (g@id)A* (10 (E) = ((g® id)A*(T ©0))Z = ((g®id)(A. 7O AQ)E;
= ((g®id)A,7) ® ((¢ ®id)A)E; = ((9 ® id)APT) © ((g ® id)AP(CEy))

2. Let I' € L(T?,T") be such that it satisfies all of the given properties. Denote by g the
element in (%,)" recursively generated by

9(1):=1, g([¢l)1:=TZ((E) —II'(CZi), 9(C ©C2) = 9(C1)g(C2)-
By the ﬁrst and last equatlon we get that g € % The claim we want to show is I' = Fb

I'r=(¢g®id)A,7 (5.7)
for all 7 € 73U {1} and
I'(¢E) = (9 @id)AQ)E; (5.8)
for all ( € %#y.

First of all, we indeed have
I'=1=(g®id)A,1

by properties (i) and (ii) as well as
I's; =%; = ((g®id)A1)E;

by property (i) and the fact that the Z; have the lowest homogeneity of the regularity

(58) holds on Y.
Assuming (58) holds on Y, we get

I[¢)i = T'T(CE:) = g([¢a)1 + TI(CEs) = g(|¢Ji)1 + (9 ® []a) AL = (g @ id)A, (s
for all C eV, using in the second equality the deﬁnition of g and in the last equality the

Assuming that (5 7) holds on :)Jnﬂ, we show that (5 8) holds on ynﬂ by an induction over
the number of trees of a symbol in Y, 1. Indeed, we first have for all 7 € ), 1 that

I(rE) =I'ToT'E; = (I'1)E = ((9 ®id)A,7)E;,

where we used property (iv). Then, if (58) holds for some (Z; € Yni1, we get for all
T € Yp41 that

NrolE)=Irol(E) = (goid)A,7) o ((§®id)A)E; = (9 ®id) (A7 © AL))E;
= ((g®@id)A. (Tt ©Q)E;,
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where we used property (iv) again in the first identity, the definition of g in the third

over the number of trees is complete.

Finally, by an induction over n, we obtain the claim.
O
Theorem 5.20. Let a > 0, f € C*(R,R) for some k € N with k > a/y+1 and (II,T) € .#°(R).
Then, Y — (f(Y)Z;)aty—1, where

/) ()1
PO Earra®) = 3 meaana 0 Dy —yriners,
n=0

and Y1(t)1 := moY (t), is a continuous map from DE(R,(V)) into D?+7_1(R, (V). More pre-
cisely, for any compact & C RY and any D > 0, there is a Ca p > 0 such that

I(R(F)E) aty—1 = (MF)Z)aty-1llasy-1.0 < CanlF =Gl x (5.9)

for all F,G € DR(R,(Y)) such that |F||, « + G, « < D.

G)=E; —T4s(G(s)=; G(t) — T .G(s))E;
B L e (T = N [ (<O R VRTE =
stef:  f<aty—1 |t —s|otr=1- stef: B<aty—1 [t —s[aTrT1=8
o< |t—s|<1 0<|t—s|<1
G(t) —TsG(s)|s—
N EC e
s,teR:  pf<at+y—1 |t75|a i
0<|t—s|<1

_ IG() = TisG(s)llo
= sup sup p—
s,teR:  O<a ‘t - S|
0<|t—s|<1
and

sup  sup [|G(t)Eillsg =sup sup [|G(t)][g—y+1 = supsup||G(t)],
teR f<a+vy—1 teR f<a+y—1 teER <

.......

O

For the remainder of the discussion, we confine ourselves to a basic outline. The idea is
to convolute the kernel K with the reconstructions of modeled distributions in Dg(R, (V) for
some « > 0. Since those reconstructions live in C*~!(R) and K is a l-regularizing kernel in
the sense of Assumption 5.1 [Hail4], it is indeed possible to perform such a convolution and
to obtain a continuous function in C7(R) as a result, if we further restrict the set of models
in order to get sufficient decay at —oo. We do this by simply demanding that I'y; = id for
s,t < 0, thus this restricted set will still contain the usual setting of rough paths where everything
happens on a compact interval of the form [0,7]. Now, we can define an abstract kernel operator

K : DZ([0, c0), <y>) — D%‘H([O,oo), (¥)) via

(KYF)(t) :=ZF(t)+ (K «RF)(t) 1.
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This operator then obviously fulfills the property that
ROHKYF = K« RYF Y F € D(())).

By showing appropriate Lipschitz bounds for K*F' relative to F', we then see that there is T' > 0
such that

d
w: DET(0.T], (V) = DET(0,T). (D), W(Z) =yl + K0S (fi(2)Ea
i=1

is a contraction, and therefore has a unique fixed point.

5.3.4 Geometric rough paths structure
For weakly geometric rough paths, we consider the model space

d
T® = (Wa) © EDWaE),

i=1

since the kernel of the linear map
¢r: T° = T8, ¢r(1):=1, ¢r(r):=9¢(1) V71 e (Ta), or((E:):=d()Zi V(€ (Fa),

consists of those linear combinations of symbols which will vanish through integration by parts.

case of branched rough paths, T then can be turned into a comodule of now ((Wy), Ay) via
®
A8 T - (Wy) @T8, AdwE; = Zwl ® weZ;, Abw = Azw
(w)

which allows us to define the action of some g € (Wy)* on T® as

I8 := (g ®id)A".

Recalling the group GV of characters on (W;), we get a regularity structure (Ag,Tg,f‘%w) for
weakly geometric rough paths. In the case of v € (1/3,1/2], it again reduces to the rough
paths structure given in Definition 13.5. [FH14] after a suitable truncation. With ¢(fg) = f’2¢,
(¢7, 1) can be shown to be a regularity structure morphism and since ¢ is surjective and
injective, there is a sub regularity structure of 7° we may identify 7% with. Thus, all the concepts

developed for TP in the previous subsections can be translated to the case of T&.
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Frequently used notation

1 Unit element of an algebra, 4:

Ay The coproduct which is dual to the shuffle product L, 20;
A, Connes-Kreimer coproduct of cuts of trees and forests, :37:
A The reduced coproduct for some coproduct A, 7

> (0 €1 ®c2 Sweedler’s notation of some coproduct value Ac, 4

€ Counit of a coalgebra, 4:

7 Flip, 4:

m, Linear map corresponding to the bilinear product o, %4:

Pa Space of polynomials in d dimensions, :16;

S Antipode of an Hopf algebra, 7:

T(V) Tensor algebra of some vector space V,:20:

u Unit map of an algebra, 4:

\% Algebraic dual space of the vector space V, i3

Wr Set of words over an alphabet I,:44:

(-,+) A duality pairing of two vector spaces, 12

° Canonical algebra product on A ® A for some algebra (4, o), 5:
w Shuffle product, 23:

* Product on trees and forests dual to the coproduct A,, 42
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Index

admissible cut, 40! empty word, 44

algebra, 33'
graded 9 ﬁltratlon 10
homomorphlsm 4 flip, 4

algebraic dual space, 3 forests 37

antipode, :7- undecorated, 37
property, _7 25 30 formal series, 24
recursion formula7 ,_IO full cut, 40:

antisymmetry, :26; function-like sector, B4
Baker—Campbell—HauSdorH series, 36
bialgebra, :5

graded, 9

homomorphlsm '5'

truncated, 3
branched rough path, 55
Butcher group, : 43

geometric, rough path, 47, i

grading, :1

Grossman- Larson product, 43

group-like elements, ;31!
truncated, 31

homomorphism
algebra, 4
bialgebra,
coalgebra, 4
Hopf algebra, 7'

Hopf algebra, :7*
graded, Q
homomorphlsm ’7
truncated, ,_30

character, 32
coalgebra 4
graded 9
homomorphlsm .4
coassociativity, 4'
cocommutativity
coideal, 4
comodule, 5
compatlblhty requirements, 5' . ..
truncated, ideal, :
concatenation, 2 3 index set, 63;
connected gradmg, 100 induced duahty pairing, ;12!
controlled rough path, 69
convolution product
coproduct, 4

Jacobi’s identity, ;26!

reduced, g labels, 37
counit, :4; length of a word, A
property, 25 Lie
counital Coalgebra € algebra, 26
crown, :40: bracket, :
polynomlals
deconcatenation, 23! series, :35:

decorations, :37:

dual e model space, 63

algebra, :14: modelled distributions, B4
basis, 12-

bialzeb, I4 multi indices, : 5-
ialgebra, ;14
coalgebra, 14 ) aan
Hopf algebra 14 pair of dual vector spaces, 12

operator, \13: polynomial algebra, 1(]5

pair, ;12 primitive elements, ;31:

dual space” product . e
algebraic, 3 in a regularity structure, 65
topologica

duality pairing, quotient
induced, ;1 algebra, 29!

coalgebra, 29
empty cut, :40:
empty forest, 37 reconstruction theorem, 66!
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reduced coproduct, I7:
regularity structure, "63
rough path
branched, ,_55
geometric, AT, 48

sector, :64:

shuffle product, 23!
structure group, 63:

sub regularity structure, 63
subalgebra, 3

subcoalgebra, :4:

Sweedler’s notation, ‘4

tensor algebra, 20
tensor product, 3'
topological dual space, :3:
trees, :37:

'Lmdecorated,f_ 6
truncated

algebra, ;30:

bialgebra, ‘30

coalgebra, \3(\‘!

Hopf algebra, 30
trunk, 40:
two-sided coideal, :
two-sided ideal, 4

undecorated forests, 37
unit element, 4:

unit map, 4

unital algebra, :4:

words, 44
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