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Zusammenfassung in deutscher
Sprache

Im Mittelpunkt dieser Arbeit stehen die von Lyons entwickelten Rough Paths (wörtlich ’raue
Pfade’), die einen algebraischen und analytischen Rahmen für Stieltjes Integrale, also Integrale
eines Pfades gegen einen anderen, bieten, in Fällen, in denen die betrachteten Pfade so rau sind,
dass das klassische Riemann-Stieltjes Integral nicht mehr konvergiert. Bevor wir Rough Paths
formal definieren können, beginnen wir mit einer Einführung in einige algebraische Grundbegriffe.
Dazu gehören zunächst Algebren und Koalgebren, zwei Begriffe, die in einer gewissen Dualitäts-
beziehung zueinander stehen. Als Kombination der beiden Begriffe erhalten wir Bialgebren, und
als Spezialfall dieser wiederum Hopf Algebren, die für diese Arbeit von zentraler Bedeutung sind.
Nachdem wir uns mit wichtigen Eigenschaften dieser Objekte vertraut gemacht haben, widmen
wir uns einer ausführlichen Diskussion verschiedener Beispiele von Hopf Algebren. Dazu gehört
unter anderem die Hopf Algebra der Polynome, bei der das Produkt durch die übliche Multip-
likation von Polynomen gegeben ist und sich das Koprodukt durch eine vertraute Binomialformel
ausdrücken lässt. Anschließend benutzen wir das Beispiel der Tensor Hopf Algebren zur Def-
inition von Weakly Geometric Rough Paths (wörtlich ’schwach geometrische raue Pfade’), die
solchen Formen von Stieltjes Integralen entsprechen, welche die übliche Regel der partiellen Inte-
gration erfüllen. Für Fälle wie die Itô-Integration, bei denen diese Regel nicht mehr anwendbar
ist, betrachten wir die von Gubinelli eingeführten Branched Rough Paths (wörtlich ’verzweigte
raue Pfade’) und verwenden dazu das Beispiel der Hopf Algebren auf Räumen von als Bäume
und Wälder bezeichneten Strukturen. Schließlich gehen wir noch auf einige Grundkonzepte der
von Hairer entwickelten Theorie der Regularitätsstrukturen ein, die uns einen weiteren Zugang
zu Weakly Geometric und Branched Rough Paths bietet. Dabei betrachten wir zuerst eine von
Hairer beschriebene allgemeine Methode, wie sich aus bestimmten Hopf Algebren eine Regular-
itätsstruktur ableiten lässt, um dann auf Basis einer formalen Picard Iteration eine Regularität-
struktur zu entwickeln, welche besser zur Betrachtung sogenannter Rough Differential Equations
(wörtlich ’raue Differentialgleichungen’) geeignet ist.
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Abstract

Lyon’s rough paths give an algebraic and analytic framework for Stieltjes integrals in a regime
of low regularity where the usual Riemann-Stieltjes integral does not converge. Before we may
rigorously define rough paths, we start with the introduction of some basic algebraic terminology.
Among them are algebras and coalgebras, two notions which are in some sense dual to each
other. As a combination of these notions we obtain bialgebras, and as a special case of them
then Hopf algebras, which play a central role in this thesis. After further algebraic preliminaries,
we give the examples of Hopf algebras we are interested in. Among them is the example of the
polynomial Hopf algebra, whose product is nothing but the usual multiplication of polynomials
and whose coproduct can be expressed very simply with the help of a binomial coefficient. We
then use the dual pair of tensor Hopf algebras to introduce weakly geometric rough paths, which
correspond to notions of Stieltjes integrals satisfying the usual integration by parts rule. For
cases like Itô-integration where we need to give up integration by parts, we look at Gubinelli’s
branched rough paths based on the dual pair of Hopf algebras on trees and forests. Finally, we
give some basic concepts of Hairer’s theory of regularity structures and use them for a different
approach to branched and weakly geometric rough paths. While we first look at a general method
described by Hairer to derive a regularity structure from certain Hopf algebras, we then develop
a regularity structure based on a formal Picard iteration which is more suitable for dealing with
rough differential equations.
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Chapter 1

Introduction

Consider a family (Xi)di=1 of paths Xi ∈ Cγ([0, T ],R), the space of Hoelder continuous functions
of exponent γ > 1/2. By the integration theory of Young, introduced in the paper [You36], the
Riemann-Stieltjes integrals (Equation (4.1) [FH14])∫ t

s

Xi
r dXj

r := lim
|P|→0

∑
[u,v]∈P

Xi
u(Xj

v −Xj
u),

where the limit is taken over partitions P of [s, t], are well defined (cf. Section 3.3.2 [LQ02]). We
may even compute iterated integrals of the type (Equation (1.3) [HK14])

X̂st(ei1...in) :=
∫ t

s

· · ·
∫ r1

s

dXi1
r1
· · · dXin

rn ,

where n ∈ N, i1, . . . in ∈ {1, . . . , d}. The set of all these words is denoted by Wd. Together with
later research, most notably by Chen (see e.g. [Che71]), it turns out that these iterated integrals
fulfill the following algebraic and analytic conditions (Based on Definition 1.2. [HK14]):

1. X̂st(1) = 1 and X̂st(w1 � w2) = X̂st(w1)X̂st(w2) for all words w1, w2 ∈ Wd,

2. X̂tt = ε and X̂st(w) = (X̂su ⊗ X̂ut)∆⊗̇w =
∑⊗̇

(w) X̂su(w1)X̂ut(w2) for all words w ∈ Wd,

3. sups6=t
|X̂st(w)|
|t−s|γ|w| <∞ for all words w ∈ Wd,

where � is the shuffle product and ∆⊗̇ is the deconcatenation coproduct on the real vector space
〈Wd〉. The object (〈Wd〉,�,∆⊗̇) forms a bialgebra. More precisely, it is a special kind of a
bialgebra called a Hopf algebra.

The crucial point, though, is that we assumed a Hölder exponent γ > 1/2. Once we have paths
of lower Hölder regularity, all of the above breaks down. Our iterated integrals aren’t defined
any more. This is where rough paths come into play. Now that we have γ ∈ (0, 1/2], the idea is
to take the above three conditions as a definition, and to say that if a map X̌ : [0, T ]2 → 〈Wd〉∗
obeys all of them, then we call it a weakly geometric rough path.

This is however not the last generalization we want to make. Condition 1. from above encodes
nothing but the integration by parts rule applied to iterated integrals. Since we also want to
cover theories of integration like Itô-integration which do not satisfy integration by parts, we
later give another collection of conditions based on a different Hopf algebra. This leads to the

1



2 CHAPTER 1. INTRODUCTION

concept of branched rough paths, which was introduced by Gubinelli in the paper [Gub10]. Rough
paths as such however were originally developed by Lyons in the papers [Lyo94], [Lyo95] and
[Lyo98].

Before we can rigorously introduce rough paths, there are a lot of algebraic concepts to
understand. In Chapter 2, we do so in mainly following the notes [Man06], but also repeatedly
refer to the book [Abe80]. The standard reference for the following topics is the book [Swe69]. We
start by defining algebras and coalgebras, two notions which are in some sense dual to each other.
With certain compatibility requirements, they can be combined to the notion of a bialgebra. For
some bialgebras, there is a certain algebra and coalgebra antimorphism called the antipode, which
is characterized by a property involving the so-called convolution product algebra given by the
product and coproduct. Bialgebras with an antipode are called Hopf algebras. We introduce
gradings which make it possible for us to even better understand the structure of the examples of
Hopf algebras we are interested in even better. Finally, we formally describe the duality relation
already mentioned, but also learn about duality between Hopf algebras as a whole, which was
presented in almost the same way in [Che71].

Chapter 3 then presents these examples of Hopf algebras. First, we look at the polynomial
Hopf algebra with the usual product of polynomials and a coproduct which is easy to express
through a multi dimensional binomial coefficient. A dual Hopf algebra can be described as the
algebra of differential operators with composition product, but it turns out to be isomorphic to
the polynomial one. Referring to the presentations of the book [Reu93], the paper [HK14] and
again [Man06], we then look at the tensor algebra whose coproduct is nothing but the dual of
the shuffle product mentioned above.

Afterwards, we take a short look at the technicalities of formal series and truncations, and
furthermore state some well-known basics about Lie algebras. Also, we introduce the exponential
map, which maps a Lie algebra to its Lie group, and its inverse, the logarithm. The exponential
map then plays an important role for us by relating primitive and group-like elements in the
case of a connected graded Hopf algebras, as explained in [HK14] and for the special case of the
tensor algebra in [Reu93].

As our last example, we look at the Connes-Kreimer Hopf algebra of trees and forests, mainly
based on [HK14] and the original paper [CK98]. After introducing all the objects fully recursively,
we give representation formulas which formalize the notion of admissible cuts already introduced
in [CK98] without relying on interpreting trees as graphs. These formulas make it easy to
introduce the dual Hopf algebra whose product is the Grossman-Larson product, the dual of the
Connes-Kreimer coproduct.

In Chapter 4, we finally get to learn more about weakly geometric and branched rough
paths. In both cases, we look at the equivalence of four different kinds of definitions. For that
equivalence, the extension theorems of Lyons, which we took from the book [LCL07], and of
Gubinelli, found in [Gub10], play a crucial role. Citing the result from [HK14], we will see that
weakly geometric rough paths are indeed included in the concept of branched rough paths.

The final Chapter 5 then gives an introduction to some concepts from Hairer’s theory of
regularity structures which was originally presented in its full scope in the paper [Hai14]. Exactly
as described in [Hai14], we look at how a regularity structure can be derived from a connected
graded Hopf algebra, and we relate rough paths to models for the regularity structure obtained
from the respective Hopf algebra. The last section then generalizes a different approach to
regularity structures for rough paths which [FH14] shortly looked at for the simplest non-trivial
case. It is motivated by a formal Picard iteration, which is a standard method of solving partial
differential equations, which we here use for the problem of a rough differential equation.



Chapter 2

Basic definitions and results

For some vector space V over some field K, we denote by V ∗ its algebraic dual space, i.e. the
vector space of all linear maps V → K. If V is equipped with a topology, we write V ′ for its
topological dual space, i.e. the vector space of all continuous linear maps V → K.

Definition 2.1. (Section I.1. [Man06]) Let V1, V2 be two vector spaces over the same field K. A
tensor product V1⊗V2 is a K vector space for which there is a bilinear map ι : V1×V2 → V1⊗V2
with the property that for every K vector space W and every bilinear map ρ : V1 × V2 → W ,
there is a unique linear map mρ : V1 ⊗ V2 →W such that

ρ = mρ ◦ ι. (2.1)

We write v1⊗ v2 := ι(v1, v2) for all v1 ∈ V1, v2 ∈ V2. With that notation, Equation (2.1) can
be formulated as

ρ(v1, v2) = mρ(v1 ⊗ v2) ∀ v1 ∈ V1, v2 ∈ V2.

It turns out that for every pair of vector spaces V1, V2 over the same field, there exists a tensor
product V1 ⊗ V2, and that the tensor product is unique up to linear isomorphisms (Proposition
I.1.1. [Man06]). For the proof of existence, one needs the axiom of choice. See the proof of
Proposition I.1.1. [Man06] for both existence and uniqueness.

What is very important for us is that for every element x ∈ V1 ⊗ V2, there is n ∈ N and
v1

1 , . . . v
n
1 ∈ V1, v1

2 , . . . , v
n
2 ∈ V2 such that

x =
n∑
i=1

ι(vi1, vi2) =
n∑
i=1

vi1 ⊗ vi2.

For this fact, also see the proof of Proposition I.1.1. [Man06]. Note that such a representation
is of course not unique. Also note that in the literature, one may sometimes find notions of
completed tensor products, especially when the vector spaces are endowed with topologies, and
for these objects, this fact does not hold true.

Due to the uniqueness of the tensor product up to isomorphisms, we may identify (V1⊗V2)⊗V3
with V1 ⊗ (V2 ⊗ V3), and therefore simply write V1 ⊗ V2 ⊗ V3 (Section I.1. [Man06]).

2.1 Algebras and coalgebras
Definition 2.2. (Section I.2.1. [Man06]) A vector space A together with an associative bilinear
map ⋄ : A × A → A is called an algebra. A subspace S ⊆ A is called subalgebra if S ⋄ S ⊆ S

3



4 CHAPTER 2. BASIC DEFINITIONS AND RESULTS

and two-sided ideal if S ⋄ A+ A ⋄ S ⊆ S holds. (A, ⋄) is unital if there is a unit element 1 ∈ A
such that 1 ⋄ a = a ⋄ 1 = a for all a ∈ A. The function u : K → A, t 7→ t1, where K is the field
under A, is called unit map.

If an algebra (A, ⋄) is given, we denote by m⋄ : A⊗A→ A the linear map generated by
m⋄(a1 ⊗ a2) := a1 ⋄ a2. Using this notation, associativity reads

m⋄(id⊗m⋄) = m⋄(m⋄ ⊗ id) (2.2)

and the unit map is characterized by

m⋄(id⊗ u) = m⋄(u⊗ id) = id, (2.3)

where we use the identification A = A⊗K = K ⊗A implying id⊗ u,u⊗ id ∈ L(A,A⊗A).

Definition 2.3. (Chapter 1 Section 2.1 [Abe80]1) An algebra homomorphism between two al-
gebras (A1, ⋄), (A2, ⬩) is a linear map Λ : A1 → A2 such that Λm⋄ = m⬩(Λ⊗ Λ).

Definition 2.4. (Section I.3.1. [Man06]) Let C be a vector space together with a linear map
∆ : C → C ⊗ C. If ∆ is coassociative, i.e.

(∆⊗ id)∆ = (id⊗∆)∆, (2.4)

we call (C,∆) a coalgebra and ∆ a coproduct. A subspace S ⊆ C is called two-sided coideal if
∆S ⊆ S ⊗C +C ⊗ S and subcoalgebra if ∆S ⊆ S ⊗ S. The coalgebra (C,∆) is counital if there
is ε ∈ C∗ such that

(ε⊗ id)∆ = (id⊗ ε)∆ = id, (2.5)

a so-called counit. (C,∆) is cocommutative if τ̂∆ = ∆, where τ̂ : C ⊗ C → C ⊗ C is the flip
linearly generated by τ̂(a⊗ b) := b⊗ a.

Remark 2.5. While every ideal of an algebra is a subalgebra but generally not every subalgebra
is an ideal, every subcoalgebra is a coideal but generally not every coideal is a subcoalgebra.

We sometimes write ∑
(c)

c1 ⊗ c2 := ∆c

and for arbitrary linear L : C ⊗ C → V then
∑

(c) L(c1 ⊗ c2) := L∆c. This concept is
called Sweedler’s notation (Section I.3.1. [Man06]). In Sweedler’s notation, coassociativity reads
(section I.3.1. [Man06]) ∑

(c)

∑
(c1)

c1:1 ⊗ c1:2 ⊗ c2 =
∑
(c)

∑
(c2)

c1 ⊗ c2:1 ⊗ c2:2. (2.6)

Definition 2.6. (Chapter 2 Section 1.1 [Abe80]2) A coalgebra homomorphism between two
coalgebras (C1,∆1), (C2,∆2) is a linear map Λ : C1 → C2 such that (Λ⊗ Λ)∆1 = ∆2Λ.

1In [Abe80], the unit property is included in the definition of an algebra, and thus also the definition of an
algebra homomorphism, which is simply called an algebra morphism there, contains the condition that the unit
of one algebra is mapped to the unit of the other algebra.

2As with the definition of an algebra, the definition of a coalgebra in [Abe80] already includes the counit
property and thus also the definiton of a coalgebra morphism there includes an additional condition concerning
the counits.
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If we have an algebra (A, ⋄) and a coalgebra (C,∆), the convolution product ∗ (Section I.4.
[Man06]) on the space of linear maps L(C,A) is defined by

S ∗ T := m⋄(S ⊗ T )∆. (2.7)

(L(C,A), ∗) forms an algebra, as

S ∗ (T ∗ V ) = m⋄

(
S ⊗ (m⋄(T ⊗ V )∆)

)
∆

= m⋄(id⊗m⋄)(S ⊗ T ⊗ V )(id⊗∆)∆ = m⋄(m⋄ ⊗ id)(S ⊗ T ⊗ V )(∆⊗ id)∆
= m⋄

(
(m⋄(S ⊗ T )∆)⊗ V

)
∆ = (S ∗ T ) ∗ V,

where we used associativity of ⋄ and coassociativity of ∆ (based on Section I.4. [Man06]). If
(A, ⋄) is unitary with unit map u and (C,∆) is counitary with counit ε, then (L(C,A), ∗) is
unitary with unit element uε (based on Section I.5. [Man06]) as

T ∗ uε = m⋄(T ⊗ uε)∆ = m⋄(id⊗ u)T (id⊗ ε)∆ = T (2.8)

and analogously uε ∗ T = T .

Definition 2.7. (Section I.3.2. [Man06]) Let (C,∆) be a coalgebra over the field K. Then, a
right comodule is a K vector space Ĉ together with a map ∆̂ : Ĉ → C ⊗ Ĉ such that

(∆⊗ id)∆̂ = (id⊗ ∆̂)∆̂.

2.2 Bialgebras and Hopf algebras
For an algebra (A, ⋄) we introduce another algebra (A ⊗ A, ⋄) where the product is bilinearly
generated by (Section I.2.2. [Man06])

(a1 ⊗ a2) ⋄ (a3 ⊗ a4) := (a1 ⋄ a3)⊗ (a2 ⋄ a4). (2.9)

The corresponding linear map is given by (Section I.2.2. [Man06])

m⋄ = (m⋄ ⊗m⋄) (id⊗ τ̂ ⊗ id)︸ ︷︷ ︸
=:τ̂1324

.

Definition 2.8. (Section I.5. [Man06], Chapter 2 Section 1.1 [Abe80]) Let (B, ⋄) be an algebra
over the field K with unit element 1 = u(1) and (B,∆) a coalgebra with counit ε. If furthermore
the compatibility requirements

1. ∆m⋄ = (m⋄ ⊗m⋄)(id ⊗ τ̂ ⊗ id)(∆ ⊗∆) (∆ is an algebra homomorphism from (B, ⋄) to
(B ⊗B, ⋄) and ⋄ is a coalgebra homomorphism from (B ⊗B, τ̂1324(∆⊗∆)) to (B,∆)),

2. ∆u = u⊗ u (u is a coalgebra homomorphism from (K, idK) to (B,∆)),

3. εm⋄ = ε⊗ ε (ε is an algebra homomorphism from (B, ⋄) to (K, ·)),

hold, we call (B, ⋄,∆) a bialgebra. For bialgebras (B1, ⬩1,∆1) with unit map u1 and counit ε,
(B2, ⬩2,∆2) with unit map u1 and counit ε, we call Λ : B1 → B2 a bialgebra homomorphism if
Λ is both an algebra homomorphism and a coalgebra homomorphism and fulfills the additional
properties Λu1 = u2 and ε2Λ = ε1.
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Remark 2.9. Applied to elements of B, the compatibility requirements read

1. ∆(b1 ⋄ b2) = ∆b1 ⋄ ∆b2 ∀ b1, b2 ∈ B,

2. ∆1 = 1⊗ 1,

3. ε(b1 ⋄ b2) = ε(b1)ε(b2) ∀ b1, b2 ∈ B.

Remark 2.10. In a bialgebra, we always have ε(1) = 1, as the counit property (2.5) implies

1 = (id⊗ ε)∆1 = (id⊗ ε)(1⊗ 1) = ε(1)1.

Thus, εu = idK and therefore ε = εuε.
We introduce the following simple lemma to avoid having to show this separately in each of

the examples of Hopf algebras we later want to look at.

Lemma 2.11. Let (A, ⋄) be an algebra and ∆ : A→ A⊗A an algebra homomorphism. Assume
that

(∆⊗ id)∆v = (id⊗∆)∆v (2.10)
holds for all v ∈ M ⊆ A. Then, we have (2.10) for all v in the subalgebra generated by M . If
furthermore ε ∈ A∗ is an algebra homomorphism and

(ε⊗ id)∆v = (id⊗ ε)∆v = v (2.11)

holds for all v ∈M , we even have (2.11) for all v in the subalgebra generated by M .

Proof. Let S denote the subalgebra generated by M . As ∆ is an algebra homomorphism, we
have for all v, w in S that

∆(v ⋄ w) =
∑
(v)

∑
(w)

(v1 ⋄ w1)⊗ (v2 ⋄ w2)

and therefore, if v and w satisfy (2.10), we get, using the notation from (2.6),

(∆⊗ id)∆(v ⋄ w) =
∑
(v)

∑
(v1)

∑
(w)

∑
(w1)

(v1:1 ⋄ w1:1)⊗ (v1:2 ⋄ w1:2)⊗ (v2 ⋄ w2)

=
∑
(v)

∑
(v2)

∑
(w)

∑
(w1)

(v1 ⋄ w1:1)⊗ (v2:1 ⋄ w1:2)⊗ (v2:2 ⋄ w2)

=
∑
(v)

∑
(v2)

∑
(w)

∑
(w2)

(v1 ⋄ w1)⊗ (v2:1 ⋄ w2:1)⊗ (v2:2 ⋄ w2:2)

= (id⊗∆)∆(v ⋄ w).

As the equation (2.10) is furthermore linear in v, which follows from ∆ being an algebra homo-
morphism, coassociativity indeed inductively extends from M to the whole of S.
If also ε is an algebra morphism, the counit property given for some v, w ∈ S implies

(ε⊗ id)∆(v ⋄ w) =
∑
(v)

∑
(w)

ε(v1 ⋄ w1)(v2 ⋄ w2) =
∑
(v)

∑
(w)

(ε(v1)v2) ⋄ (ε(w1)w2)

=
(∑

(v)

ε(v1)v2

)
⋄
(∑

(w)

ε(w1)w2

)
= v ⋄ w.

Analogously, we get (id⊗ε)∆(v⋄w) = v⋄w. Hence, also the counit property inductively extends
from M to S.
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For a bialgebra (B, ⋄,∆) with unit element 1, let∑
(h)

h′ ⊗ h′′ := ∆̃h := ∆h− 1⊗ h− h⊗ 1

denote the reduced coproduct of h (Proof of Proposition II.1.1. [Man06], Section 2.2 [HK14]).
Lemma 2.12. (Part of Proposition II.1.1. [Man06]) (B, ∆̃) is a coalgebra.
Proof. (Part of the proof of Proposition II.1.1. [Man06]) As ∆ maps B linearly to B⊗B, the same
is true for ∆̃. Thus, according to Definition 2.4, the only thing left to show is coassociativity.
By Definition 2.8 of a bialgebra we have ∆u = u⊗ u, implying

∆̃u = −u⊗ u. (2.12)

Therefore, we compute

(∆̃⊗ id)∆̃ = (∆̃⊗ id)(∆− u⊗ id− id⊗ u)(2.12)= (∆̃⊗ id)∆ + u⊗ u⊗ id− ∆̃⊗ u
= (∆⊗ id)∆ + u⊗ u⊗ id + u⊗ id⊗ u + id⊗ u⊗ u−∆⊗ u− (id⊗ u⊗ id)∆− u⊗∆

(2.4)= (id⊗∆)∆ + u⊗ u⊗ id + u⊗ id⊗ u + id⊗ u⊗ u−∆⊗ u− (id⊗ u⊗ id)∆− u⊗∆

= (id⊗ ∆̃)∆ + id⊗ u⊗ u− u⊗ ∆̃(2.12)= (id⊗ ∆̃)∆̃.

Having shown that ∆̃ is a coproduct, we may introduce the convolution product algebra
(L(B,B), ∗̃) by

S ∗̃ T := m⋄(S ⊗ T )∆̃. (2.13)
Definition 2.13. (Section I.5. [Man06]) A bialgebra (H, ⋄,∆) with unit map u and counit ε
together with an antipode, i.e. a linear operator S : H → H fulfilling the antipode property

m⋄(S ⊗ id)∆ = m⋄(id⊗ S)∆ = uε︸︷︷︸
=ε(·)1

, (2.14)

is called a Hopf algebra.
Although [Abe80] gives the definition of a Hopf algebra homomorphism (morphism in the

language used there), the following simple fact we came across is not mentioned, but it is for
example stated as Exercise 9. of Section III.8 [Kas95]. The idea for the proof came from a similar
argumentation in the proof of Proposition I.7.1. [Man06].
Theorem 2.14. Let (H1, ⋄,∆1,S1) and (H2, ⬩,∆2,S2) be Hopf algebras and Λ : H1 → H2 be a
bialgebra homomorphism. Then,

ΛS1 = S2Λ.

Therefore, we call Λ a Hopf algebra homomorphism (Chapter 2 Section 1.2 [Abe80]).
Proof. Consider the algebra (L(H1, H2), ∗) defined by S ∗ T := m⬩(S⊗ T )∆1 with unit u2ε1 (see
(2.7) and (2.8)), where ui is the unit map and εi is the counit of Hi. We have

ΛS1 ∗ Λ = m⬩(ΛS1 ⊗ Λ)∆1 = m⬩(Λ⊗ Λ)(S1 ⊗ id)∆1 = Λm⋄(S1 ⊗ id)∆1 = Λu1ε1 = u2ε1

= u2ε2Λ = m⬩(id⊗ S2)∆2Λ = m⬩(id⊗ S2)(Λ⊗ Λ)∆1 = m⬩(Λ⊗ S2Λ)∆1 = Λ ∗ S2Λ

and therefore

ΛS1 = ΛS1 ∗ u2ε1 = ΛS1 ∗ (Λ ∗ S2Λ) = (ΛS1 ∗ Λ) ∗ S2Λ = u2ε1 ∗ S2Λ = S2Λ. (2.15)
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Corollary 2.15. (Section 2.1 [HK14]) If there is an antipode for a given bialgebra, then it is
unique.

Proof. If for a bialgebra (B1, ⋄,∆), there are antipodes S1 and S2, then both (B1, ⋄,∆,S1) and
(B2, ⋄,∆,S2) are Hopf algebras, thus we have S1=S2 via Theorem 2.14 using the trivial bialgebra
homomorphism id.

Theorem 2.16. (Proposition 4.0.1. [Swe69], Theorem III.3.4. [Kas95], Proposition I.7.1. [Man06])
Let (H, ⋄,∆,S) be a Hopf algebra with unit element 1, unit map u and counit ε. The antipode
S is

(i) an algebra antimorphism, i.e.
Sm⋄ = m⋄(S ⊗ S)τ̂ , (2.16)

where τ̂ denotes the flip, resp.

S(h1 ⋄ h2) = Sh2 ⋄ Sh1 ∀h1, h2 ∈ H.

Furthermore, Su = u, resp. S1 = 1.

(ii) a coalgebra antimorphism, i.e.
∆S = τ̂(S ⊗ S)∆. (2.17)

Furthermore, εS = ε.

Proof. (Based on the proofs of Proposition 4.0.1. [Swe69], of Theorem III.3.4. [Kas95] and of
Proposition I.7.1. and Lemma I.7.2. [Man06]) First of all, using associativity (2.2), we have

m⋄(m⋄ ⊗m⋄) = m⋄(m⋄ ⊗ id)(id⊗ id⊗m⋄) = m⋄(id⊗m⋄)(id⊗ id⊗m⋄)
= m⋄(id⊗m⋄)(id⊗m⋄ ⊗ id).

(2.18)

Likewise, using coassociativity (2.4),

(∆⊗∆)∆ = (id⊗ id⊗∆)(∆⊗ id)∆ = (id⊗ id⊗∆)(id⊗∆)∆
= (id⊗∆⊗ id)(id⊗∆)∆.

(2.19)

Put ∆ := (id⊗ τ̂ ⊗ id)(∆⊗∆). Furthermore, for any permutation (i1 . . . in), let τ̂i1...in : H⊗n →
H⊗n be the linear map generated by (Section I.1. [Man06])

τ̂i1...in(hi1 ⊗ · · · ⊗ hin) := h1 ⊗ · · · ⊗ hn.

(i) Consider the algebra (L(H ⊗H,H), ∗) defined by S ∗ T := m⋄(S ⊗ T )∆ with unit u(ε⊗ ε).
Using the antipode property (2.14) and the unit property (2.3), we get

m⋄ ∗m⋄(S ⊗ S)τ̂ = m⋄(m⋄ ⊗m⋄(S ⊗ S)τ̂)∆ = m⋄(m⋄ ⊗m⋄(S ⊗ S)τ̂)τ̂1423(∆⊗∆)
(2.18)= m⋄(id⊗m⋄)(id⊗m⋄ ⊗ id)(id⊗ id⊗ S ⊗ S)τ̂1342(∆⊗∆)
= m⋄(id⊗m⋄)τ̂132(id⊗ id⊗m⋄)(id⊗ S ⊗ id⊗ S)(∆⊗∆)

(2.14)= m⋄(id⊗m⋄)τ̂132(id⊗ S ⊗ uε)(∆⊗ id)
(2.3)= m⋄(id⊗ S)(∆⊗ ε)(2.14)= uε⊗ ε = u(ε⊗ ε).

On the other hand, using the antipode property as well as the first and third compatibility
requirement in Definition 2.8, we have

Sm⋄ ∗m⋄ = m⋄(Sm⋄⊗m⋄)∆ = m⋄(S ⊗ id)(m⋄⊗m⋄)∆ = m⋄(S ⊗ id)∆m⋄ = uεm⋄ = u(ε⊗ ε).
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Then, equation (2.16) follows completely analogous to the calculation in (2.15).
By Remark 2.10, the antipode property, the second compatibility requirement and the unit
property we also have

1 = uε1 = m⋄(S ⊗ id)∆1 = S1 ⋄ 1 = S1.

(ii) Consider the algebra (L(H,H ⊗H), ∗) defined by S ∗T := m⋄(S⊗T )∆ with unit (u⊗ u)ε.
Using the antipode property (2.14) and the counit property (2.3), we get

∆ ∗ τ̂(S ⊗ S)∆ = m⋄(∆⊗ τ̂(S ⊗ S)∆)∆ = (m⋄ ⊗m⋄)τ̂1324(∆⊗ τ̂(S ⊗ S)∆)∆
(2.19)= (m⋄ ⊗m⋄)τ̂1342(id⊗ id⊗ S ⊗ S)(id⊗∆⊗ id)(id⊗∆)∆
= (m⋄ ⊗m⋄)(id⊗ S ⊗ id⊗ S)(id⊗ id⊗∆)τ̂132(id⊗∆)∆

(2.14)= (m⋄ ⊗ id)(id⊗ S ⊗ uε)τ̂132(id⊗∆)∆
(2.5)= (m⋄ ⊗ u)(id⊗ S)∆(2.14)= uε⊗ u = (u⊗ u)ε.

On the other hand, using the antipode property as well as the first and second compatibility
requirement in Definition 2.8, we have

∆S ∗∆ = m⋄(∆S ⊗∆)∆ = m⋄(∆⊗∆)(S ⊗ id)∆ = ∆m⋄(S ⊗ id)∆ = ∆uε = (u⊗ u)ε.

Then, equation (2.17) follows completely analogous to the calculation in (2.15).
By Remark 2.10, the antipode property, the third compatibility requirement and the counit
property we also have

ε = εuε = εm⋄(S ⊗ id)∆ = (ε⊗ ε)(S ⊗ id)∆ = εS(id⊗ ε)∆ = εS.

2.3 Gradings
Definition 2.17. (Chapter 1 Section 2.2 and Chapter 2 Section 4.1 [Abe80], Section II.1.
[Man06])Let Gi, i ∈ N0 be vector spaces over the same field and put G :=

⊕∞
i=0Gi. Then,

(i) an algebra (G, ⋄) is graded if

Gn ⋄Gm ⊆ Gn+m ∀n,m ∈ N0,

(ii) a coalgebra (G,∆) is graded if

∆Gn ⊆
⊕
m≤n

Gm ⊗Gn−m ∀n ∈ N0,

(iii) a bialgebra (G, ⋄,∆) is graded if both (G, ⋄) and (G,∆) are graded,

(iv) a Hopf algebra (G, ⋄,∆,S) is graded if (G, ⋄,∆) is graded and

SGn ⊆ Gn ∀n ∈ N0.
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The family (Gi)i∈N0 is called grading of G. The algebra, coalgebra, bialgebra or Hopf algebra is
connected graded if additionally dimG0 = 1.

If (Gi)i∈N0 is a grading, the family (Gi)i∈N0 , G
i :=

⊕i
j=0Gi is a so-called filtration (Chapter

1 Section 2.2 and Chapter 2 Section 4.1 [Abe80], Section II.2. [Man06]).

Theorem 2.18. (Proposition II.1.1. [Man06]) In a connected graded bialgebra (B, ⋄,∆) graded
by (Bi)i we have ker ε =

⊕∞
i=1Bi and

∆̃Bn ⊆
⊕

0<m<n
Bm ⊗Bn−m ∀n ∈ N. (2.20)

Proof. (Proof of Proposition II.1.1. [Man06]) Let K be the field under B. Let n ∈ N and x ∈ Bn
be arbitrary. From Definition 2.17 we know that ∆x ∈

⊕
m≤nBm ⊗ Bn−m. As furthermore

B0 = span{1} due to connectedness, there are y, z ∈ Bn and w ∈
⊕

0<m<nBm ⊗ Bn−m such
that

∆x = 1⊗ y + z ⊗ 1 + w.

By the counit property (2.5) and ε(1) = 1 (see Remark 2.10), we have

x = (id⊗ ε)∆x = ε(y)1 + z + (id⊗ ε)w.

Due to linear independence of z− x ∈ Bn, ε(y)1 ∈ B0 and (id⊗ ε)w ∈
⊕

0<m<nBm this implies
x = z, ε(y) = 0 and (id ⊗ ε)w = 0. Again applying the counit property, we get, using what we
just found out,

x = (ε⊗ id)∆x = ε(x)1 + y + (ε⊗ id)w.

As before, linear independence of y − x ∈ Bn, ε(x)1 ∈ B0 and (ε⊗ id)w ∈
⊕

0<m<nBm implies
x = y, ε(x) = 0 and (ε⊗ id)w = 0. Hence, we conclude

∆x = 1⊗ x+ x⊗ 1 + w,

implying ∆̃x = w ∈
⊕

0<m<nBm ⊗ Bn−m, as well as ε(x) = 0. As n ∈ N and x ∈ Bn where
arbitrary, this implies (2.20) and, together with ε(1) = 1, also ker ε =

⊕∞
i=1Bi.

Remark 2.19. Due to Theorem 2.18 we especially have

∆b1 = 1⊗ b1 + b1 ⊗ 1 ∀ b1 ∈ B1.

The following theorem will be very important for some of our examples of Hopf algebraslater.
We chose a different approach for the proof than the one given in [Man06]. For a function
f : M → N and M ′ ⊆M , let f�M ′ denote the restriction of f to M ′.

Theorem 2.20. (Corollary II.3.2. [Man06]) Any connected graded bialgebra (H, ⋄,∆) over the
field K is a connected graded Hopf algebra with the antipode given by the recursion

Sh = −h−m⋄(id⊗ S)∆̃h = −h−
∑
(h)

h′ ⋄ Sh′′ ∀h ∈ ker ε, Sk1 = k1 ∀ k ∈ K, (2.21)

or equivalently

Sh = −h−m⋄(S ⊗ id)∆̃h = −h−
∑
(h)

Sh′ ⋄ h′′ ∀h ∈ ker ε, Sk1 = k1 ∀ k ∈ K. (2.22)
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Proof. Let (Hi)i be the grading of H, (Hi)i the filtration and define the family (H̃i)i∈N by
H̃i :=

⊕i
j=1Hj .

1. The individual recursions are well-defined. We only look at (2.21), the other case is com-
pletely analogous. We proceed by induction. First of all, S�H0 is obviously a well-defined
linear operator as H is connected. Assume S�Hn is a well-defined linear operator. As (2.20)
implies ∆̃Hn+1 ⊆ H̃n ⊗ H̃n, the operator

S�Hn+1 := −id�Hn+1 −m⋄(id⊗ S�Hn)∆̃�Hn+1

is well-defined in accordance with (2.21) and linear due to the fact that it is a sum of
compositions of linear operators.

2. Both recursions yield the same results. Let S1 be the linear operator obtained by (2.21)
and S2 the one obtained by (2.22). Again, we proceed by induction. As H is connected,
H0 = span{1} and hence S1�H0 = S2�H0 by definition. Assume

S1�Hn = S2�Hn (2.23)

for some n ∈ N0. Then,

(id ∗̃ S1)�H̃n+1
(♦)= (id ∗̃ S2)�H̃n+1 = −(id ∗̃ id)�H̃n+1 − (id ∗̃ S2 ∗̃ id)�H̃n+1

(♦)= −(id ∗̃ id)�H̃n+1 − (id ∗̃ S1 ∗̃ id)�H̃n+1 = (S1 ∗̃ id)�H̃n+1
(♦)= (S2 ∗̃ id)�H̃n+1

where we used (2.23) and the definition of ∗̃ (2.13) combined with ∆̃Hn+1 ⊆ H̃n ⊗ H̃n for
the equalities labeled (♦). We conclude S1�Hn+1 = S2�Hn+1 .

3. Both recursions yield the antipode. Now, let S := S1 = S2 be the operator given by each
of the recursions. For h ∈ ker ε, we have

m⋄(S ⊗ id)∆h = m⋄(S ⊗ id)∆̃h+ m⋄(S ⊗ id)(1⊗ h+ h⊗ 1) = m⋄(S ⊗ id)∆̃h+ h+ Sh(2.22)= 0

and analogously m⋄(id ⊗ S)∆h = 0 by (2.22). Also, uε(h) = 0. Hence, the antipode
property (2.14) is fulfilled on ker ε. Finally, due to the fact that ∆1 = 1⊗1 in a bialgebra,
we get

m⋄(S ⊗ id)∆1 = m⋄(S1⊗ 1) = 1 = m⋄(id⊗ S)∆1,

just as uε(1) = 1. By linearity, the antipode property is fulfilled on the whole of H.

Finally, we show by yet another induction that S preserves the grading. First of all, we obviously
have SH0 = H0. Assuming SHm ⊆ Hm for all m < n, we get SHn ⊆ Hn by (2.21) and

m⋄(id⊗ S)∆̃Hn

(2.20)
⊆ m⋄(id⊗ S)

⊕
0<m<n

Hm ⊗Hn−m ⊆ m⋄

⊕
0<m<n

Hm ⊗Hn−m ⊆ Hn

since (H, ⋄,∆) was assumed to be a graded bialgebra.
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2.4 Pairs of dual vector spaces
Definition 2.21. (Chapter II Section 3. [RR64], Chapter 2 Section 2.1 [Abe80]) Let V, Ṽ be
two vector spaces over the same field K and 〈 · , · 〉 : V × Ṽ → K bilinear such that

1. 〈v, ṽ〉 = 0 ∀ ṽ ∈ Ṽ =⇒ v = 0,

2. 〈v, ṽ〉 = 0 ∀ v ∈ V =⇒ ṽ = 0.

Then, we call (V, Ṽ ) a pair of dual vector spaces and 〈 · , · 〉 its duality pairing.

Lemma 2.22. (Chapter II Section 5. [RR64]) Let (V, Ṽ ) be a pair of dual vector spaces and V
finite dimensional. Then, dimV = dim Ṽ and for each basis (bi)i of V there is a dual basis (b̃i)i
of Ṽ , i.e. 〈bi, b̃j〉 = δi,j.

Proof. (Based on Chapter II Section 5. [RR64]) For each ṽ ∈ Ṽ let ι(ṽ) := 〈 · , ṽ〉 ∈ V ′. Obviously,
ι is linear. If ṽ 6= 0, then there is v ∈ V such that 〈v, ṽ〉 6= 0 as 〈 · , · 〉 is a duality pairing. Hence
ι(ṽ) 6= 0, i.e. ι is injective. Therefore dim Ṽ ≤ dimV ′ = dimV . Thus Ṽ is also finite dimensional
and by the same argument as before we get dimV ≤ dim Ṽ ′ = dim Ṽ . As ι : Ṽ → V ′ is injective
and dim Ṽ = dimV ′ we have that ι is bijective. Let now (bi)i be a basis of V and define κi ∈ V ′
by κi(bj) := δi,j . Then (ι−1(κi))i is a dual basis of (bi)i.

Theorem 2.23. For i ∈ {1, 2}, let 〈 · , · 〉i be a duality pairing of a K-vector space Vi with another
K-vector space Ṽi, where K is a field of characteristic zero. Then, (V1⊗V2, Ṽ1⊗ Ṽ2) is a pair of
dual vector spaces with the induced duality pairing〈

m∑
j=1

vj1 ⊗ v
j
2,

n∑
l=1

ṽl1 ⊗ ṽl2

〉
:=

m∑
j=1

n∑
l=1
〈vj1, ṽl1〉1〈v

j
2, ṽ

l
2〉2. (2.24)

Proof.

1. The map 〈 · , · 〉 is well-defined and bilinear. Let mi : Vi ⊗ Ṽi → K be the linear maps
corresponding to 〈 · , · 〉i. Put m := (m1 ⊗m2)(id⊗ τ̂ ⊗ id). Then, 〈 · , · 〉 := m( · ⊗ · ) yields
the expansion (2.24) and is obviously bilinear.

2. The map 〈 · , · 〉 is a duality pairing. Let 0 6= u =
∑m
j=1 u

j
1 ⊗ u

j
2 ∈ V1 ⊗ V2 be arbitrary.

Without loss of generality, we may assume that

dim span(uj1)1≤j≤m = dim span(uj2)1≤j≤m = m,

because otherwise the number of summands may be reduced. Put Wi := span(uj1)1≤j≤m,

W⊥i := {ṽ ∈ Ṽi|〈w, ṽ〉i = 0 ∀w ∈Wi}

and Fi := Ṽi/W
⊥
i . For ṽ ∈ Ṽi let [ṽ] ∈ Fi denote its equivalence class. Hence, for ṽ, ṽ′ ∈ Ṽi,

[ṽ] = [ṽ′] ⇐⇒ 〈w, ṽ〉i = 〈w, ṽ′〉i ∀w ∈Wi.

This means that 〈w, [ṽ]〉′i := 〈w, ṽ〉i is well-defined. 〈w, [ṽ]〉i = 0 for all w ∈ Wi implies by
definition [ṽ] = [0] = 0. Also, 〈w, [ṽ]〉′i = 0 for all [ṽ] ∈ Fi means by definition 〈w, ṽ〉i = 0
for all ṽ ∈ Ṽi and therefore w = 0 because (Vi, Ṽi) is a pair of dual vector spaces. Hence,
(Wi, Fi) is a pair of dual vector spaces and since Wi is finite dimensional, we may use
Lemma 2.22 to get that there is a basis ([ũji ])1≤j≤n of Fi such that

δj,l = 〈uji , [ũ
l
i]〉′i = 〈uji , ũ

l
i〉i.
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Put ũ :=
∑m
j=1 u

j
1 ⊗ u

j
2. Then,

〈u, ũ〉 =
m∑

j,l=1
〈uj1, ũl1〉1〈u

j
2, ũ

l
2〉2 = m 6= 0.

As 0 6= u ∈ V1⊗V2 was arbitrary, we just showed implication 1 of Definition 2.21. Showing
implication 2 of the definition is then completely analogous.

Definition 2.24. Let (Vi, Ṽi), i ∈ {1, 2} be pairs of dual vector spaces with duality pairings
$i = 〈 · , · 〉i. We then say that a linear map S : V1 → V2 is the dual operator of a linear map
S̃ : Ṽ2 → Ṽ1 if

〈Sv, ṽ〉2 = 〈v, S̃ṽ〉1

for all v ∈ V1 and ṽ ∈ Ṽ2. We write S
$2
↑↓
$1

S̃, or shortly S ↑↓ S̃ if the involved duality pairings are

clear from the context3.

Lemma 2.25. Let (Vi, Ṽi) and (Wj , W̃j) be pairs of dual vector spaces over the same field K.

(i) If both S1 : V1 → V2 and S2 : V1 → V2 are dual operators of S̃ : Ṽ2 → Ṽ1, then S1 = S2.

(ii) If K is of characteristic zero, A : V1 → V2 is the dual operator of Ã : Ṽ2 → Ṽ1 and
B : W1 → W2 is the dual operator of B̃ : W̃2 → W̃1, then A ⊗ B is the dual operator of
Ã⊗ B̃ under the induced duality pairing.

(iii) If F : V1 → V2 is the dual operator of F̃ : Ṽ2 → Ṽ1 and G : V2 → V3 is the dual operator
of G̃ : Ṽ3 → Ṽ2, then GF is the dual operator of F̃ G̃.

Proof. Let 〈 · , · 〉νi be the duality pairing of (Vi, Ṽi) and 〈 · , · 〉ωj the duality pairing of (Wj , W̃j).

(i) 〈S1v, ṽ〉ν2 = 〈v, S̃ṽ〉ν1 = 〈S2v, ṽ〉ν2 for all v ∈ V1, ṽ ∈ Ṽ2 implies 〈(S1 − S2)v, ṽ〉ν2 = 0 for
all v ∈ V1, ṽ ∈ Ṽ2, hence (S1 − S2)v = 0 for all v ∈ V1 by the Definition 2.21 of dual pairs.

(ii) Let 〈 · , · 〉νiµi be the induced duality pairing of (Vi ⊗Wi, Ṽi ⊗ W̃i). Under the given as-
sumption,

〈(A⊗B)(v1 ⊗ w1), ṽ2 ⊗ w̃2〉ν2ω2 = 〈Av1, ṽ2〉ν2〈Bw1, w̃2〉ω2 = 〈v1, Ãṽ2〉ν1〈w1, B̃w̃2〉ν1

= 〈v1 ⊗ w1, (Ã⊗ B̃)(ṽ2 ⊗ w̃2)〉ν1ω1

for all v1 ∈ V1, w1 ∈W1, ṽ2 ∈ Ṽ2, w̃2 ∈ W̃2. The implication follows via bilinearity.

(iii) Under the given assumption,

〈GFv1, ṽ3〉3 = 〈Fv1, G̃ṽ3〉2 = 〈v1, F̃ G̃ṽ3〉1

for all v1 ∈ V1 and ṽ3 ∈ Ṽ3.

3This notation is nonstandard and just used for the purpose of this thesis.
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Theorem 2.26. (Equations (3.4.1) to (3.4.5) and Section 3.5 [Che71], also based on Chapter 2
Sections 2 and 3 [Abe80], Proposition I.3.1. [Man06]) Let (V, Ṽ ) be a pair of dual vector spaces
over the field K of characteristic zero.

1. If ∆⋄ : Ṽ → Ṽ ⊗ Ṽ is the dual operator of m⋄ : V ⊗ V → V , then (Ṽ ,∆⋄) is a coalgebra
iff (V, ⋄) is a algebra. In that case, we say that (Ṽ ,∆⋄) is the dual coalgebra of (V, ⋄) and
(V, ⋄) is the dual algebra of (Ṽ ,∆⋄).

2. If (V, ⋄) is the dual algebra of (Ṽ ,∆⋄) and u : K → V is the dual operator of ε : Ṽ → K,
then u is a unit map iff ε is a counit.

3. If (V, ⋄) is the dual unital algebra of (Ṽ ,∆⋄) and (V,∆⬩) is the dual counital coalgebra of
(Ṽ , ⬩), then (V, ⋄,∆⬩) is a bialgebra iff (Ṽ , ⬩,∆⋄) is a bialgebra. In that case, we say that
(V, ⋄,∆⬩) is the dual bialgebra of (Ṽ , ⬩,∆⋄) and vice versa.

4. If (V, ⋄,∆⬩) is the dual bialgebra of (Ṽ , ⬩,∆⋄) and S⋄
⬩ : V → V is the dual map of S⬩

⋄ : Ṽ →
Ṽ , then (Ṽ , ⋄,∆⬩,S⋄

⬩) is a Hopf algebra iff (Ṽ , ⬩,∆⋄,S⬩
⋄) is a Hopf algebra. In that case, we

say that (Ṽ , ⋄,∆⬩,S⋄
⬩) is the dual Hopf algebra of (Ṽ , ⬩,∆⋄,S⬩

⋄) and vice versa.

Proof.

1. Due to Lemma 2.25 (ii) and (iii),

(id⊗∆⋄)∆⋄ ↑↓ m⋄(id⊗m⋄) and (∆⋄ ⊗ id)∆⋄ ↑↓ m⋄(m⋄ ⊗ id).

Hence, by Lemma 2.25 (i), coassociativity of ∆⋄ (cf. (2.4)) and associativity of ⋄ (cf. (2.2))
are equivalent.

2. Due to Lemma 2.25 (ii) and (iii),

(id⊗ ε)∆⋄ ↑↓ m⋄(id⊗ u) and (ε⊗ id)∆⋄ ↑↓ m⋄(u⊗ id).

Hence, by Lemma 2.25 (i), the counit property of ε (cf. (2.5)) and the unit property of u
(cf. (2.3)) are equivalent.

3. Due to Lemma 2.25 (ii) and (iii),

∆⋄m⬩ ↑↓ ∆⬩m⋄ and (m⬩ ⊗m⬩)(id⊗ τ̂ ⊗ id)(∆⋄ ⊗∆⋄) ↑↓ (m⋄ ⊗m⋄)(id⊗ τ̂ ⊗ id)(∆⬩ ⊗∆⬩)

as well as
∆⋄u⬩ ↑↓ ε⬩m⋄ and u⬩ ⊗ u⬩ ↑↓ ε⋄ ⊗ ε⋄

as well as
ε⋄m⬩ ↑↓ ∆⬩u⋄ and ε⬩ ⊗ ε⬩ ↑↓ u⋄ ⊗ u⋄.

Hence, by Lemma 2.25 (i), the compatibility requirements (cf. definition 2.8) of ⬩,∆⋄,u⬩, ε⋄
and those of ⋄,∆⬩,u⋄, ε⬩ are equivalent.

4. Due to Lemma 2.25 (ii) and (iii),

m⬩(id⊗ S⬩
⋄)∆⋄ ↑↓ m⋄(id⊗ S⋄

⬩)∆⬩, m⬩(S⬩
⋄ ⊗ id)∆⋄ ↑↓ m⋄(S⋄

⬩ ⊗ id)∆⬩ and u⬩ε⋄ ↑↓ u⋄ε⬩.

Hence, by Lemma 2.25 (i), the antipode property (cf. (2.14)) of S⬩
⋄ and the antipode

property of S⋄
⬩ are equivalent.



Chapter 3

Connected graded Hopf algebras

3.1 Polynomials and differential operators
Definition 3.1. For the set Nd0 = {n = (n1, . . . , nd)|ni ∈ N0 ∀ 1 ≤ i ≤ d} of d-dimensional multi
indices we define

(i) the partial order n ≤ m ⇐⇒ ni ≤ mi ∀ i with the shorthand notation n < m ⇐⇒
n ≤ m ∧ n 6= m,

(ii) the absolute value |n| :=
∑d
i=1 ni,

(iii) the sum + : Nd0 × Nd0 → Nd0, n+m := (n1 +m1, . . . , nd +md),

(iv) the difference n−m := (n1 −m1, . . . , nd −md) for m ≤ n,

(v) the factorial · ! : Nd0 → N, n! :=
∏d
i=1 ni!,

(vi) the binomial coefficient
(
n
m

)
:= n!

(n−m)!m! for m ≤ n.

By (ei)1≤i≤d ⊂ Nd0 we denote the family of multi indices given by eij := δi,j .

3.1.1 Overview
In this section, we want to introduce the following two structures and show that they are Hopf
algebras:

Pd = span{Xn, n ∈ Nd0} = R[X1, . . . ,Xd]
• : Pd × Pd → Pd, Xn •Xm = Xn+m

u : R→ Pd, u(r) = rX0

∆◦ : Pd → Pd ⊗ Pd, ∆◦Xn =
∑

0≤m≤n

(
n

m

)
Xm ⊗Xn−m

ε : Pd → R, ε(Xn) =
{

1 if n = 0
0 else

S◦• : Pd → Pd, S◦•Xn = (−1)nXn

15
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Dd = span{Dn, n ∈ Nd0}

◦ : Dd × Dd → Dd, Dn ◦ Dm =
(
n+m

m

)
Dn+m

u : R→ Dd, u(r) = rD0

∆• : Dd → Dd ⊗ Dd, ∆•Dn =
∑

0≤m≤n
Dm ⊗Dn−m

ε : Dd → R, ε(Dn) =
{

1 if n = 0
0 else

S•◦ : Dd → Dd, S•◦Dn = (−1)nDn

3.1.2 Polynomial algebra
The content of this subsection is standard knowledge and belongs to the folklore of the theory
of graded Hopf algebras.

The polynomial algebra is defined as the real vector space Pd := span{Xn, n ∈ Nd0} together
with the bilinear product • generated by XnXm := Xn • Xm := Xn+m. Put 1 := X0 and
Xi := Xei . Our goal is to extend (Pd, •) to a connected graded Hopf algebra. Intuitively, we
choose the grade of some monomial Xn to be equal to its polynomial degree |n|. This grading
yields the decomposition Pd =

⊕
n∈N Pd,n, where Pd,n := span{Xm, m ∈ Nd0 : |m| = n}. Hence,

Pd,n • Pd,m ⊆ Pd,n+m and dimPd,0 = 1, which means that (Pd, •) is a connected graded algebra
(see Definition 2.17). When defining a compatible coproduct ∆◦ which preserves the grading, we
have to have ∆◦1 := 1⊗1, which is exactly the compatibility requirement for the unit element in
a bialgebra (see Remark 2.9), as well as ∆◦Xi := 1⊗Xi + Xi⊗1 for all i ∈ {1, . . . , d} due to the
grading and remark 2.19. Then, in order to get a coproduct which is an algebra homomorphism
as required in a bialgebra (see Definition 2.8), we need to define

∆◦Xn :=
∏

i∈{1,...,d}

(∆◦Xi)•ni =
∑

0≤m≤n

(
n

m

)
Xm ⊗Xn−m ∀n ∈ Nd0, (3.1)

where again (x ⊗ v) • (y ⊗ w) := (x • y) ⊗ (v • w). The coproduct on the whole of Pd is then
generated by linearity.
Remark 3.2. As we just showed there is only one candidate for a coproduct which may extend
(Pd, •) to a bialgebra under the predefined grading (Pd,n)n.

Lemma 3.3. (Pd, •,∆◦) is a connected graded bialgebra.

Proof. (Pd, •) is an unital algebra as • is obviously associative and by definition bilinear with
unit 1. Likewise, ∆◦ is linear by definition. Its linearity, the bilinearity of • and the first equality
in (3.1) then imply that ∆◦ is an algebra homomorphism. Hence, by Lemma 2.11 coassociativity
already follows generally from the special cases

(id⊗∆◦)∆◦Xi = 1⊗∆◦Xi + Xi ⊗∆◦1 = 1⊗ 1⊗Xi + 1⊗Xi ⊗ 1 + Xi ⊗ 1⊗ 1
= ∆◦1⊗Xi + ∆◦Xi ⊗ 1 = (∆◦ ⊗ id)∆◦Xi.

Thus, (Pd,∆◦) is a coalgebra. The fact that ε ∈ Pd∗ : ε(P ) = P (0) is a counit is obvious from
the expansion in (3.1). The validity of the compatibility requirements for the counit and the unit
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element, namely ∆◦1 = 1⊗ 1 and ε(P )ε(Q) = P (0)Q(0) = (PQ)(0) = ε(PQ) for all P,Q ∈ Pd
(cf. Definition 2.8 and Remark 2.9) then completes the proof of (Pd, •,∆◦) being a bialgebra. As
Pd,n • Pd,m ⊆ Pd,n+m and

∆◦Pd,n ⊆
⊕

m+l=n
Pd,m ⊗ Pd,l

(see (3.1)) as well as dimPd,0 = 1, it is also connected graded according to Definition 2.17.

As the graded bialgebra (Pd, •,∆◦) is connected, Theorem 2.20 shows that an antipode is
given by the recursion

S◦•P = −P −m•(id⊗ S◦• )∆̃◦P = −P −
∑
(P )

P ′ • S◦•P ′′ ∀P ∈ ker ε, S◦•1 = 1. (3.2)

Knowing that an antipode exists, we may deduce its form without performing the recursion,
but simply from the algebra antimorphism property any antipode fulfills due to Theorem 2.16.
Indeed, we just need to compute

0 = uε(Xi) = m•(id⊗ S◦• )∆◦Xi = m•(id⊗ S◦• )(1⊗Xi + Xi ⊗ 1) = 1 • S◦•Xi + Xi • S◦•1
= S◦•Xi + Xi,

concluding S◦•Xi = −Xi for all i ∈ {1, . . . , d}, and the fact that S◦• is a • antimorphism, and thus
a homomorphism since • is commutative, already implies that

S◦•Xn = S◦• (X
•n1
1 • · · · •X•ndd ) = (S◦•X1)•n1 • · · · • (S◦•Xd)•nd = (−X1)•n1 • · · · • (−Xd)•nd

= (−1)|n|Xn

for all n ∈ Nd0. The map S◦• is then obviously graded, which is also stated by Theorem 2.20. We
thus have the following.

Theorem 3.4. (Pd, •,∆◦,S◦• ) is a connected graded Hopf algebra.

3.1.3 Algebra of differential operators
Now, we consider the space of differential operators Dd := span{∂n, n ∈ Nd0} over the field R.
Our treatment of the corresponding Hopf algebra is based on Section 2.1 [Bro04] and on Example
2.2 [HK14], and also on some standard facts.

The tuple (Pd,Dd) is a pair of dual vector spaces via the duality pairing (Remark 4.19 [Hai14])

〈∂n, p〉 := (∂np)(0), p ∈ Pd (3.3)

The dual basis of {Xn, n ∈ Nd0} is then given by {Dn, n ∈ Nd0}, where Dn := 1
n!∂

n. Indeed, we
have

〈Dn,Xm〉 = 1
n! (∂

nXm)(0) = δn,m ∀n,m ∈ Nd0.

Analogous to the case of the polynomials, we introduce the intuitive grading leading to the
decomposition Dd =

⊕
n∈N Dd,(n) into subspaces Dd,(n) := span{Dm, m ∈ Nd0 : |m| = n} as well

as a bilinear product, the composition ◦, via ∂n∂m := ∂n ◦ ∂m := ∂n+m. Obviously, there is an
isomorphism ιPdDd : (Pd, •)→ (Dd, ◦) such that ιPdDd(Xn) = ∂n, i.e. the grading is preserved by
it as well. Hence, by Remark 3.2, we also have to choose the coproduct ∆• and the antipode S•◦
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isomorphic to ∆◦ and S◦• in order to extend (Dd, ◦) to a connected graded Hopf algebra, meaning
(Section 2.1 [Bro04], Example 2.2 [HK14])

∆•∂n :=
∑

0≤m≤n

(
n

m

)
∂m ⊗ ∂n−m, S•◦∂n := (−1)|n|∂n.

When using the basis (Dn)n∈Nd0 , the algebraic rules read

Dn ◦ Dm =
(
n+m

m

)
Dn+m, ∆•Dn =

∑
0≤m≤n

Dm ⊗Dn−m, S•◦Dn = (−1)|n|Dn.

Theorem 3.5. (Dd, ◦,∆•,S•◦ ) is a connected graded Hopf algebra and dual to (Pd, •,∆◦,S◦• ),
i.e.

〈D1 ◦D2, P 〉 = 〈D1 ⊗D2,∆◦P 〉 ∀D1, D2 ∈ Dd, P ∈ Pd, (3.4)
〈∆•D,P ⊗Q〉 = 〈D,P •Q〉 ∀D ∈ Dd, P,Q ∈ Pd, (3.5)

〈S•◦D,P 〉 = 〈D,S◦•P 〉 ∀D ∈ Dd, P ∈ Pd. (3.6)

Proof. The first claim is guaranteed by Theorem 3.4 and isomorphy by construction. As for the
duality identities, it is sufficient to check their validity for the elements of the bases (Xn)n∈Nd0
and (Dn)n∈Nd0 due to the bilinearity of the duality pairing and the products and the linearity of
the coproducts and the antipodes. Considering (3.4), we indeed compute

〈Dn ◦ Dm,Xl〉 =
(
n+m

n

)
δn+m,l =

∑
0≤k≤l

(
l

k

)
δn,kδm,l−k =

∑
0≤k≤l

(
l

k

)
〈Dn ⊗Dm,Xk ⊗Xl−k〉

= 〈Dn ⊗Dm,∆◦Xl〉

for all n,m, l ∈ Nd0. Likewise,

〈∆•Dn,Xm ⊗Xl〉 =
∑

0≤k≤n
〈Dk ⊗Dn−k,Xm ⊗Xl〉 =

∑
0≤k≤n

δk,mδn−k,l = δn,m+l = 〈Dn,Xm •Xl〉

proves (3.5) and

〈S•◦Dn,Xm〉 = (−1)|n|δn,m = (−1)|m|δn,m = 〈Dn,S◦•Xm〉

validates (3.6).

At this point, we would like to move to the algebraic dual space Pd∗, the space of formal
series

∑
n∈Nd0

anDn of which Dd is just the subspace of finite series. We can extend the Hopf
algebra operations via( ∑

n∈Nd0

anDn
)
◦
( ∑
m∈Nd0

bmDm
)

:=
∑

n,m∈Nd0

anbmDn ◦ Dm =
∑
k∈Nd0

∑
0≤l≤k

(
k

l

)
albk−lDk,

∆P∗
∑
n∈Nd0

anDn :=
∑
n∈Nd0

an∆•Dn =
∑

m,k∈Nd0

am+k Dm ⊗Dk,

SP′
∑
n∈Nd0

anDn :=
∑
n∈Nd0

anS•◦Dn =
∑
n∈Nd0

(−1)|n|anDn,

but the problem is that (Pd∗,∆P∗) does not constitute a coalgebra, because we only have that
∆P∗Pd∗ ⊆ (Pd ⊗ Pd)∗, yet
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Theorem 3.6. ∆P∗Pd∗ * Pd∗ ⊗ Pd∗.

Proof. At first, let d = 1. Consider D :=
∑∞
n=0Dn

2 ∈ P1
∗. We have

∆P∗D =
∞∑
n=0

∑
k≤n2

Dk ⊗Dn
2−k =

∞∑
k=0
Dk ⊗

( ∑
n2≥k

Dn
2−k
)
. (3.7)

Assume ∆P∗D ∈ P1
∗ ⊗ P1

∗. Then, there is l ∈ N, (aik)k,i ⊂ R and (Li)i ⊂ P1
∗ such that

∆P∗D =
l∑
i=1

(( ∞∑
k=0

aikDk
)
⊗ Li

)
=
∞∑
k=0
Dk ⊗

( l∑
i=1

aikLi

)
.

This is a contradiction to (3.7) as

dim span
{ l∑
i=1

aikLi, k ∈ N0

}
≤ l, but dim span

{ ∑
n2≥k

Dn
2−k, k ∈ N0

}
=∞.

For d > 1, considering D :=
∑
n∈N0

Dn2e1 ∈ Pd∗ will lead to the same result.

However, this is not a big issue for us, since in Section 3.3.1, we will see that we can never-
theless work with the extended operation ∆P∗ basically as usual, and that the defining identities
of a Hopf algebra remain valid for formal series.

3.2 Tensor Hopf algebras

3.2.1 Overview

In this section, we want to introduce the following two structures and show that they are Hopf
algebras:

T(V ) =
∞⊕
n=0

V ⊗̇n

⊗̇ : T(V )× T(V )→ T(V )
u : K → T(V ), u(r) = r1
∆
�

: T(V )→ T(V )⊗ T(V ), u = v1 ⊗̇ . . . ⊗̇ vn is mapped to

∆
�
u = 1⊗ u+ u⊗ 1 +

∑
0<i<n

∑
σ∈Sh(i,n)

vσ(1) ⊗̇ · · · ⊗̇ vσ(i) ⊗ vσ(i+1) ⊗̇ · · · ⊗̇ vσ(n)

ε : T(V )→ K, ε(1) = 1, ε(V ⊗̇n) = {0} for n ∈ N
S�⊗̇ : T(V )→ T(V ), S�⊗̇(v1 ⊗̇ · · · ⊗̇ vn) = (−1)nvn ⊗̇ · · · ⊗̇ v1
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T(Ṽ )
� : T(Ṽ )× T(Ṽ )→ T(Ṽ ),

(ṽ1 ⊗̇ · · · ⊗̇ ṽi)� (ṽi+1 ⊗̇ · · · ⊗̇ ṽn) :=
∑

σ∈Sh(i,n)

ṽσ−1(1) ⊗̇ · · · ⊗̇ ṽσ−1(n)

u : K → T(Ṽ ), u(r) = r1
∆⊗̇ : T(Ṽ )→ T(Ṽ )⊗ T(Ṽ ),

∆⊗̇(ṽ1 ⊗̇ · · · ⊗̇ ṽn) =
n∑
i=0

ṽ1 ⊗̇ · · · ⊗̇ ṽi ⊗ ṽi+1 ⊗̇ · · · ⊗̇ ṽn

ε : T(Ṽ )→ K, ε(1) = 1, ε(Ṽ ⊗̇n) = {0} for n ∈ N
S⊗̇
�

: T(Ṽ )→ T(Ṽ ), S⊗̇
�

(v1 ⊗̇ · · · ⊗̇ vn) = (−1)nvn ⊗̇ · · · ⊗̇ v1

3.2.2 Concatenation product Hopf algebra
Definition 3.7. (Section I.2.2. [Man06], Chapter 4 [HK14]) For some real or complex vector
space V and tensor products ⊗̇, the tensor algebra of V is given by

T(V ) :=
∞⊕
n=0

V ⊗̇n, (3.8)

where V ⊗̇0 := span{1} is isomorphic to R or C, respectively.

We consider ⊗̇ : T(V ) × T(V ) → T(V ) as the algebra product on T(V ) with unit 1, also
called concatenation, while T(V )⊗ T(V ) * T(V ) reoccurs as the space to which the coproduct
maps.

Lemma 3.8. (Section I.2.2. [Man06]) The couple (T(V ), ⊗̇) is a connected graded unital algebra
under the grading given by (3.8).

Proof. Tensor products are bilinear and associativity is fulfilled due to the usual identification
u1 ⊗̇ u2 ⊗̇ u3 := (u1 ⊗̇ u2) ⊗̇ u3 = u1 ⊗̇ (u2 ⊗̇ u3). The unit is by definition given by 1.

Definition 3.9. (Based on the definition of the shuffle product in Chapter 4 [HK14]) Let ∆
�

:
T(V )→ T(V )⊗ T(V ) be the linear map generated by ∆

�
1 := 1⊗ 1 and

∆
�
u := 1⊗ u+ u⊗ 1 +

∑
0<i<n

∑
σ∈Sh(i,n)

vσ(1) ⊗̇ · · · ⊗̇ vσ(i) ⊗ vσ(i+1) ⊗̇ · · · ⊗̇ vσ(n) (3.9)

for all u = v1 ⊗̇ · · · ⊗̇ vn ∈ V ⊗̇n, where

Sh(i, n) := {σ ∈ Sn|σ(1) < . . . < σ(i), σ(i+ 1) < . . . < σ(n)}

and Sn is the group of permutations of the set {1, . . . , n}.

Example 3.10. Let a, b, c, d ∈ V be arbitrary. Since

Sh(1, 4) = {(1234), (2134), (3124), (4123)},
Sh(2, 4) = {(1234), (1324), (1423), (2314), (2413), (3412)},
Sh(3, 4) = {(1234), (1243), (1342), (2341)},
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we get

∆
�

(a ⊗̇ b ⊗̇ c ⊗̇ d) = 1⊗ a ⊗̇ b ⊗̇ c ⊗̇ d+ a ⊗̇ b ⊗̇ c ⊗̇ d⊗ 1 + a⊗ b ⊗̇ c ⊗̇ d+ b⊗ a ⊗̇ c ⊗̇ d
+ c⊗ a ⊗̇ b ⊗̇ d+ d⊗ a ⊗̇ b ⊗̇ c+ a ⊗̇ b⊗ c ⊗̇ d+ a ⊗̇ c⊗ b ⊗̇ d
+ a ⊗̇ d⊗ b ⊗̇ c+ b ⊗̇ c⊗ a ⊗̇ d+ b ⊗̇ d⊗ a ⊗̇ c+ c ⊗̇ d⊗ a ⊗̇ b
+ a ⊗̇ b ⊗̇ c⊗ d+ a ⊗̇ b ⊗̇ d⊗ c+ a ⊗̇ c ⊗̇ d⊗ b+ b ⊗̇ c ⊗̇ d⊗ a.

If b = c and a = d, we thus have

∆
�

(a ⊗̇ b ⊗̇ b ⊗̇ a) = 1⊗ a ⊗̇ b ⊗̇ b ⊗̇ a+ a ⊗̇ b ⊗̇ b ⊗̇ a⊗ 1 + a⊗ b ⊗̇ b ⊗̇ a+ 2 b⊗ a ⊗̇ b ⊗̇ a
+ a⊗ a ⊗̇ b ⊗̇ b+ 2 a ⊗̇ b⊗ b ⊗̇ a+ a ⊗̇ a⊗ b ⊗̇ b+ b ⊗̇ b⊗ a ⊗̇ a
+ 2 b ⊗̇ a⊗ a ⊗̇ b+ a ⊗̇ b ⊗̇ b⊗ a+ 2 a ⊗̇ b ⊗̇ a⊗ b+ b ⊗̇ b ⊗̇ a⊗ a.

Lemma 3.11. (Proposition 1.9 [Reu93], Section I.6.2. [Man06]) The operator ∆
�
is the unique

(T(V ), ⊗̇) homomorphism to T(V )⊗ T(V ) satisfying

∆
�
v = 1⊗ v + v ⊗ 1 (3.10)

for all v ∈ V . The object (T(V ), ⊗̇,∆
�

) is a connected graded bialgebra.

Proof. The property (3.10) is included in (3.9), because the sum over 0 < i < n is empty for
n = 1. Let n ∈ N and v1, . . . , vn+1 ∈ V be arbitrary. Since for all σ ∈ Sh(i, n + 1) we have
σ(i) = n+ 1 or σ(n+ 1) = n+ 1, we get

∆̃
�

(un ⊗̇ vn+1) =
∑
(un)

(
(u′1 ⊗̇ vn+1)⊗ u′′n + u′1 ⊗ (u′′2 ⊗̇ vn+1)

)
+ un ⊗̇ vn+1 + vn+1 ⊗̇ un

= ∆̃
�
un ⊗̇ (vn+1 ⊗ 1 + 1⊗ vn+1) + un ⊗̇ vn+1 + vn+1 ⊗̇ un

= ∆
�
un ⊗̇∆

�
vn+1 − un ⊗̇ vn+1 ⊗ 1− 1⊗ un ⊗̇ vn+1.

Hence, inductively we prove

∆
�

(v1 ⊗̇ · · · ⊗̇ vn) = ∆
�
v1 ⊗̇ · · · ⊗̇∆

�
vn (3.11)

for all n ∈ N and v1, . . . , vn ∈ V , showing that ∆
�
is an algebra homomorphism. Since (3.11)

is a necessary condition for an algebra homomorphism, ∆
�

is indeed the unique algebra ho-
momorphism such that (3.10) holds. It is then also a coproduct due to Lemma 2.11, since
(id⊗∆

�
)∆

�
v = (∆

�
⊗ id)∆

�
v holds for all v ∈ V . Together with the counit given by ε

�
(1) = 1,

ε
�

(V ⊗̇n) = 0, n ≥ 1, all the compatibility requirements are fulfilled, hence (T(V ), ⊗̇,∆
�

) is a
bialgebra. Since from (3.9) we see that

∆
�
V ⊗̇n ⊆

⊕
0≤m≤n

V ⊗̇m ⊗ V ⊗̇n−m,

it is also connected graded.

Lemma 3.12. (Lemma 1.5 [Reu93], Section I.6.2. [Man06]) The linear operator S�⊗̇ : T(V ) →
T(V ) generated by

S�⊗̇1 := 1, S�⊗̇(v1 ⊗̇ · · · ⊗̇ vn) := (−1)nvn ⊗̇ · · · ⊗̇ v1 ∀ vi ∈ V

is an antipode of (T(V ), ⊗̇,∆
�

).
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Proof. (Proof of Lemma 1.5 [Reu93]) As m⊗̇(id⊗ S�⊗̇)∆
�
1= m⊗̇(S�⊗̇ ⊗ id)∆

�
1= uε1= 1, it only

remains to show

m⊗̇(id⊗ S�⊗̇)∆
�
u = m⊗̇(S�⊗̇ ⊗ id)∆

�
u = 0 ∀u ∈ V ⊗̇m,m ∈ N, (3.12)

where we proceed by induction. Regarding the case m = 1, we obtain

m⊗̇(id⊗ S�⊗̇)∆
�
v = 1 ⊗̇ S�⊗̇v + v ⊗̇ S�⊗̇1 = −v + v ⊗̇ 1 = 0

as well as
m⊗̇(S�⊗̇ ⊗ id)∆

�
v = S�⊗̇1 ⊗̇ v + S�⊗̇v ⊗̇ 1 = 1 ⊗̇ v − v = 0.

for all v ∈ V . Assuming that (3.12) holds for m = n, we have∑
(w)

w′ ⊗̇ S�⊗̇w′′ =
∑
(w)

S�⊗̇w′ ⊗̇ w′′ = 0

for arbitrary w ∈ V ⊗̇n. Let x ∈ V be arbitrary as well. Then,

∆
�

(w ⊗̇ x) = ∆
�
w ⊗̇∆

�
x =

∑
(w)

(w′ ⊗ (w′′ ⊗̇ x) + (w′ ⊗̇ x)⊗ w′′)

and therefore

m⊗̇(S�⊗̇ ⊗ id)∆
�

(w ⊗̇ x) =
∑
(w)

(
S�⊗̇w′ ⊗̇ (w′′ ⊗̇ x) + S�⊗̇(w′ ⊗̇ x) ⊗̇ w′′

)
=
(∑

(w)

S�⊗̇w′ ⊗̇ w′′
)
⊗̇ x+ x ⊗̇

∑
(w)

S�⊗̇w′ ⊗̇ w′′ = 0.

Analogously, we get

m⊗̇(id⊗ S�⊗̇)∆
�

(x ⊗̇ w) =
∑
(w)

(
w′ ⊗̇ S�⊗̇(x ⊗̇ w′′) + (x ⊗̇ w′) ⊗̇ S�⊗̇w′′

)
=
(∑

(w)

w′ ⊗̇ S�⊗̇w′′
)
⊗̇ x+ x ⊗̇

∑
(w)

w′ ⊗̇ S�⊗̇w′′ = 0.

As w ∈ V ⊗̇n, x ∈ V were arbitrary, we get (3.12) for m = n+ 1 by linearity of S�⊗̇ .

Corollary 3.13. (Section I.6.2. [Man06]) (T(V ), ⊗̇,∆
�
,S�⊗̇) is a connected graded Hopf algebra.

3.2.3 Shuffle product Hopf algebra
Theorem 3.14. Let 〈 · , · 〉 be a duality pairing of V with some vector space Ṽ . Then, the pair
(T(V ),T(Ṽ )) is a pair of dual vector spaces with duality pairing〈 ∞∑

n=0
un,

∞∑
m=0

ũm

〉
T

:=
∞∑
n=0
〈un, ũn〉⊗̇n, (3.13)

where 〈a1, b1〉⊗̇0 := ab, 〈v, ṽ〉⊗̇1 := 〈v, ṽ〉 and〈
k∑
i=1

vi1 ⊗̇ · · · ⊗̇ vin,
l∑

j=1
ṽj1 ⊗̇ · · · ⊗̇ ṽjn

〉
⊗̇n

:=
k∑
i=1

l∑
j=1
〈vi1, ṽ

j
1〉 · · · 〈vin, ṽjn〉.
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Proof. By repeatedly applying Theorem 2.23, we see that the pairings 〈 · , · 〉⊗̇n, n ∈ N0 are all
well-defined and bilinear. Thus, also 〈 · , · 〉T is well-defined and bilinear. For some arbitrary
0 6= u =

∑∞
n=0 un ∈ T((V )) with um ∈ V ⊗̇m for all m ∈ N0, there is k such that uk 6= 0. If k = 0,

we are done as 〈u,1〉T 6= 0. Otherwise, we see through repetitive application of Theorem 2.23
that (V ⊗̇k, Ṽ ⊗̇k) is a pair of dual vector spaces and hence there is ũ ∈ Ṽ ⊗̇k such that

0 6= 〈uk, ũ〉⊗̇k = 〈u, ũ〉T.

Analogously, we show that for each x̃ ∈ T(Ṽ ) there is x ∈ T(V ) such that 〈x, x̃〉T 6= 0.

Lemma 3.15. (Sections 1.4 and 1.5 [Reu93], Chapter 4 [HK14]) The shuffle product � : T(Ṽ )×
T(Ṽ )→ T(Ṽ ) bilinearly generated by

1� u := u� 1 := u

and
(ṽ1 ⊗̇ · · · ⊗̇ ṽi)� (ṽi+1 ⊗̇ · · · ⊗̇ ṽn) :=

∑
σ∈Sh(i,n)

ṽσ−1(1) ⊗̇ · · · ⊗̇ ṽσ−1(n)

is dual to ∆
�
.

Proof. Let v1, . . . , vn ∈ V and ṽ1, . . . , ṽk+l ∈ Ṽ be arbitrary. Put w := v1 ⊗̇ · · · ⊗̇ vn, a :=
ṽ1 ⊗̇ · · · ⊗̇ ṽk and b := ṽk+1 ⊗̇ · · · ⊗̇ ṽk+l. If k + l 6= n, then 〈w, a� b〉T = 0 = 〈∆

�
w, a⊗ b〉T⊗ as

w ∈ V ⊗̇n, a� b ∈ Ṽ ⊗̇(k+l), ∆
�
w ∈

n⊕
i=0

V ⊗̇i ⊗ V ⊗̇(n−i), a⊗ b ∈ V ⊗̇k ⊗ V ⊗̇l. (3.14)

If n = k + l, then

〈w, a� b〉T =
∑

σ∈Sh(k,n)

n∏
j=1
〈vj , ṽσ−1(j)〉 =

∑
σ∈Sh(k,n)

n∏
j=1
〈vσ(j), ṽj〉

=
∑

σ∈Sh(k,n)

〈vσ(1) ⊗̇ · · · ⊗̇ vσ(k), ṽ1 ⊗̇ · · · ⊗̇ ṽk〉⊗̇k〈vσ(k+1) ⊗̇ · · · ⊗̇ vσ(n), ṽk+1 ⊗̇ · · · ⊗̇ ṽn〉⊗̇l

= 〈∆
�
w, a⊗ b〉T⊗.

For z ∈ T(V ) we have

〈z,1� u〉T = 〈z, u� 1〉T = 〈z, u〉T = 〈∆
�
z,1⊗ u〉T⊗ = 〈∆

�
z, u⊗ 1〉T⊗

and for x, y ∈ T(Ṽ ) also

〈1, x� y〉T = 〈1, x〉T〈1, y〉T = 〈1⊗ 1, x⊗ y〉T⊗ = 〈∆
�
1, a⊗ b〉T⊗.

The duality of � and ∆
�
then follows by (bi)linearity.

Lemma 3.16. (Chapter 4 [HK14]) The deconcatenation ∆⊗̇ : T(Ṽ ) → T(Ṽ ) ⊗ T(Ṽ ) linearly
generated by

∆⊗̇1 := 1⊗ 1, ∆⊗̇(ṽ1 ⊗̇ · · · ⊗̇ ṽn) =
n∑
i=0

ṽ1 ⊗̇ · · · ⊗̇ ṽi ⊗ ṽi+1 ⊗̇ · · · ⊗̇ ṽn (3.15)

is dual to the concatenation ⊗̇.
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Proof. Consider w = ṽ1 ⊗̇ . . .⊗̇ ṽn ∈ Ṽ and a = v1 ⊗̇ . . .⊗̇vk, b = vk+1 ⊗̇ . . .⊗̇vk+l ∈ V , 0 < k < n.
Then, 〈a⊗ b,∆⊗̇w〉T⊗ = 0 = 〈a ⊗̇ b, w〉T if k + l 6= n (cf. (3.14)). If k + l = n, we have

〈a⊗ b,∆⊗̇w〉T⊗ = 〈v1 ⊗̇ . . . ⊗̇ vk, ṽ1 ⊗̇ . . . ⊗̇ ṽk〉⊗̇k〈vk+1 ⊗̇ . . . ⊗̇ vn, ṽk+1 ⊗̇ . . . ⊗̇ ṽn〉⊗̇(n−k)

= 〈a ⊗̇ b, w〉T.

The remainder of the proof is completely analogous to that of Lemma 3.15.

Lemma 3.17. The linear operator S⊗̇
�

: T(Ṽ )→ T(Ṽ ) generated by

S⊗̇
�

1 := 1, S⊗̇
�

(ṽ1 ⊗̇ · · · ⊗̇ ṽn) := (−1)nṽn ⊗̇ · · · ⊗̇ ṽ1

is dual to S�⊗̇.

Proof. We have for u ∈ V ⊗̇m and v ∈ V ⊗̇n that 〈u,S⊗̇
�
w〉T = 0 = 〈S�⊗̇u,w〉T if m 6= n. Also,

〈S�⊗̇1,1〉T = 1 = 〈1,S⊗̇
�

1〉T and for u = v1 ⊗̇ · · · ⊗̇ vn, w = ṽ1 ⊗̇ · · · ⊗̇ ṽn we get

〈u,S⊗̇
�
w〉T = (−1)n

n∏
i=1
〈vi, ṽn−i〉 = 〈S�⊗̇u,w〉T.

Theorem 3.18. (Proposition 1.9 [Reu93], Chapter 4 [HK14]) (T(Ṽ ),�,∆⊗̇,S⊗̇� ) is a connected
graded Hopf algebra and dual to the Hopf algebra (T(V ), ⊗̇,∆

�
,S�⊗̇).

Proof. The operations �, ∆⊗̇ and S⊗̇
�
obviously are compatible with the grading. The fact that

(T(Ṽ ),�,∆⊗̇,S⊗̇� ) follows from Theorem 2.26 applied to the duality relations of Lemmas 3.15,
3.16 and 3.17 and the obvious dualities of unitmaps and counits.

3.3 Formal series, Lie algebra and truncations
3.3.1 Formal series
This section is based on the use of formal series and infinite linearity in [Reu93], though our
definitions are a bit different.

For any vector space G graded by (Gi)i, i.e. G =
⊕∞

i=0Gi for subspaces Gi, the corresponding
space of formal series is given by

GΠ :=
∞∏
i=0

Gi :=
{ ∞∑
n=0

un

∣∣∣∣∣um ∈ Gm ∀m ∈ N0

}
,

where the product is the Cartesian product of vector spaces (Chapter V Section 5. [RR64]). For
the space G⊗G, consider the induced grading

([G⊗G]i)i :=
(⊕
m≤i

Gm ⊗Gi−m
)
i
. (3.16)

Let πn : GΠ → Gn and πn : [G ⊗G]Π → [G ⊗G]n be the canonical projections. Generally, for
k ∈ N, k ≥ 2, the grading of the space G⊗k is given by

([G⊗k]i)i :=
( ⊕
m1,...,mk∈N0:
m1+···+mk=i

Gm1 ⊗ · · · ⊗Gmk
)
i
,

and we denote the canonical projection on [G⊗k]n by π[k]
n .
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Theorem 3.19.

(i) If (G, ⋄) is a graded algebra, then GΠ is an algebra together with the extended product
⋄x : GΠ ×GΠ → GΠ given by

πnm⋄x(a⊗ b) = πn(a ⋄x b) :=
n∑
i=0

πia ⋄ πn−ib = m⋄πn(a⊗ b).

(ii) If (G,∆) is a graded coalgebra, then the extended coproduct ∆x : GΠ → [G⊗G]Π given by

πn∆x := ∆πn

is coassociative. If (G,∆) is counitary with counit ε, then εx : GΠ → K given by

εx := επ0.

fullfills the counit property

(εx ⊗ id)∆x = (id⊗ εx)∆x = id.

(iii) If (G, ⋄,∆) is a graded bialgebra with unit map u and counit ε over the field K such that
B>0 ⊆ ker ε, then (GΠ, ⋄x,∆x) fulfills the compatibility requirements

(a) ∆xm⋄x = (m⋄x ⊗m⋄x)(id⊗ τ̂ ⊗ id)(∆x ⊗∆x) (∆x is an algebra homomorphism from
(GΠ, ⋄x) to ([G⊗G]Π, ⋄x)),

(b) ∆xu = u⊗ u,
(c) εxm⋄ = εx ⊗ εx (εx is an algebra homomorphism from (GΠ, ⋄x) to (K, ·)),

where ⋄ is defined as in (2.9).

(iv) If (G, ⋄,∆,S) is a graded Hopf algebra such that B>0 ⊆ ker ε and Sx : GΠ → GΠ is the
extended antipode given by

πnSx := Sπn,

then Sx fulfills the antipode property

m⋄x(Sx ⊗ id)∆x = m⋄x(id⊗ Sx)∆x = uεx.

Proof.

(i) From associativity of ⋄, we conclude

πn((a ⋄x b) ⋄x c) =
n∑
i=0

πi(a ⋄x b) ⋄ πn−ic =
n∑
i=0

i∑
j=0

(πja ⋄ πi−jb) ⋄ πn−ic

=
n∑
i=0

j∑
j=0

πia ⋄ (πi−jb ⋄ πn−ic) =
n∑
k=0

n−k∑
l=0

πka ⋄ (πlb ⋄ πn−k−lc)

=
n∑
k=0

πka ⋄ πn−k(b ⋄x c) = πn(a ⋄x (b ⋄x c)).
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(ii) Coassociativity of ∆ implies

π[3]
n (∆x ⊗ id)∆x = (∆⊗ id)πn∆x = (∆⊗ id)∆πn = (id⊗∆)∆πn = (id⊗∆)πn∆x

= π[3]
n (id⊗∆x)∆x.

(iii) Due to the first compatibility requirement of Definition 2.8, we have

πn∆xm⋄x = ∆πnm⋄x = ∆m⋄πn = (m⋄ ⊗m⋄)τ̂1324(∆⊗∆)πn = (m⋄ ⊗m⋄)τ̂1324π
[4]
n (∆x ⊗∆x)

= (m⋄ ⊗m⋄)π[4]
n τ̂1324(∆x ⊗∆x) = πn(m⋄x ⊗m⋄x)τ̂1324(∆x ⊗∆x)

The second compatibility requirement follows from

∆x1 = ∆xπ01 = π0∆1 = π0(1⊗ 1) = 1⊗ 1.

Finally, from the original third compatibility requirement of Definition 2.8, we conclude

εxm⋄x = επ0m⋄x = εm⋄π0 = (ε⊗ ε)π0 = εx ⊗ εx.

(iv) From the original antipode property (2.14), it follows

πnm⋄x(id⊗ Sx)∆x = m⋄πn(id⊗ Sx) = m⋄(id⊗ S)πn∆x = m⋄(id⊗ S)∆πn = uεπn = πnuεx,

since uεπn = 0 = πnuεx if n 6= 0 and otherwise uεπ0 = uεx = π0uεx. Likewise, πnm⋄x(Sx ⊗
id)∆x = πnuεx.

In the following, we will simply also write ⋄, ∆, ε, S for ⋄x, ∆x, εx, Sx when it is clear from
the context that we mean the extended operations on GΠ.

3.3.2 Lie Algebras
Definition 3.20. (Section 0.1 [Reu93]) A Lie algebra is a vector space l together with a bilinear
map b = [ · , · ] : l× l→ l, the Lie bracket, with the properties

1. [x, x] = 0 for all x ∈ l,

2.
[
[a, b], c

]
+
[
[b, c], a

]
+
[
[c, a], b

]
= 0 for all a, b, c ∈ l (Jacobi’s identity).

Remark 3.21. (Section 0.1 [Reu93]) As for all a, b ∈ l we have

0 = [a+ b, a+ b] = [a, a] + [a, b] + [b, a] + [b, b] = [a, b] + [b, a],

the Lie bracket is antisymmetric, i.e.

[a, b] = −[b, a] ∀ a, b ∈ l.

Definition 3.22. A sub Lie algebra of a Lie algebra (l, b) is a subspace V ⊆ l such that

[V, V ] ⊆ V.

The sub Lie algebra generated by a subspace S ⊆ l, i.e. the intersection of all sub Lie algebras
containing S, is denoted by 〈S〉b.
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Remark 3.23. (Section 0.1 [Reu93]) For any algebra (A, ⋄), there is a Lie algebra (A, b⋄) given
by

b⋄(a, b) := [a, b]⋄ := a ⋄ b− b ⋄ a ∀ a, b ∈ A.

If A is an algebra graded by (Ai)i, put gA :=
∏∞
i=1Ai, which is a Lie algebra together with the

Lie bracket b⋄ of the extended product ⋄.

Definition 3.24. (Based on Section 1.3 [Reu93]) For a Lie algebra (l, b), the linear operator
R : T(l)→ l recursively generated by

R1 = 0, Rx = x, R(x ⊗̇ u) = [x,Ru] ∀x ∈ l, u ∈
∞⊕
n=1

l⊗̇n

is called right norm bracketing.

Theorem 3.25. (Based on Section 0.4.1 [Reu93]) For a subspace W of a Lie algebra (l, b), we
have

RT(W ) = 〈W 〉b.

Proof. (’⊇’ part of proof is taken from Section 0.4.1 [Reu93]) On the one hand, we haveRT(W ) ⊆
〈W 〉b, since if Ru ∈ 〈W 〉b and w ∈ W , then also R(w ⊗̇ u) = [w,Ru] ∈ 〈W 〉b, because 〈W 〉b is
a sub Lie algebra containing W . On the other hand, each v ∈ 〈W 〉b can be written as a linear
combination of nested Lie brackets. Since

[[a, b], c] = −[[b, c], a]− [[c, a], b] = [a, [b, c]] + [b, [c, a]] = [a, [b, c]]− [b, [a, c]] ∀ a, b, c ∈ 〈W 〉b

due to Jacobi’s identity and antisymmetry, we can inductively transform all nested Lie brackets
into a linear combination of right norm bracketings, and thus we also have RT(W ) ⊇ 〈W 〉b.

3.3.3 Exponential map
Let A be a connectedly graded algebra, this time over a field of characteristic zero. Put GA :=
1 + gA ⊆ AΠ (Section II.3. [Man06]). Define the maps exp⋄ : gA → GA and log⋄ : GA → gA by

exp⋄(u) :=
∞∑
n=0

u⋄n

n! and log⋄(1 + u) :=
∞∑
n=1

(−1)n−1u⋄n

n
(3.17)

(Equations (3.1.1) and (3.1.2) [Reu93], Section II.3. [Man06]).

Theorem 3.26.

1. (Equation (3.1.3) [Reu93], Section II.3. [Man06], Section 2.3 [HK14]) The maps exp⋄ and
log⋄ are bijective and log⋄ is the inverse function of exp⋄.

2. (Based on the proof of Theorem 3.2 [Reu93]) If u1, u2 ∈ gA with u1 ⋄ u2 = u2 ⋄ u1, then

exp⋄(u1) ⋄ exp⋄(u2) = exp⋄(u2) ⋄ exp⋄(u1) = exp⋄(u1 + u2).

If v1, v2 ∈ GA with v1 ⋄ v2 = v2 ⋄ v1, then

log⋄(v1) + log⋄(v2) = log⋄(v1 ⋄ v2).

3. (Based on Proposition II.3.1. [Man06]) The pair (GA, ⋄) forms a group.
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We do not proof Statement 1. of the theorem. It is a standard fact for the case of the
tensor algebra (T(V ), ⊗̇), and the general case follows easily from it through looking at suitable
homomorphisms.

Proof of the remainder.

2. Let u1, u2 ∈ gA with u1 ⋄ u2 = u2 ⋄ u1 be arbitrary. Then,

exp⋄(u1 + u2) =
∞∑
n=0

(u1 + u2)⋄n

n! =
∞∑
n=0

n∑
m=0

(
n

m

)
u⋄m1 ⋄ u⋄(n−m)

2
n! =

∞∑
n=0

n∑
m=0

u⋄m1 ⋄ u⋄(n−m)
2

m!(n−m)!

=
∞∑
k=0

∞∑
l=0

u⋄k1 ⋄ u⋄l2
k!l! = exp⋄(u1) ⋄ exp⋄(u2).

Let v1, v2 ∈ GA with v1 ⋄ v2 = v2 ⋄ v1 be arbitrary. Then, we obviously have log⋄(v1) ⋄
log⋄(v2) = log⋄(v2) ⋄ log⋄(v1), and thus

exp⋄(log⋄(v1) + log⋄(v2)) = exp⋄(log⋄(v1)) ⋄ exp⋄(log⋄(v2)) = v1 ⋄ v2 = exp⋄(log⋄(v1 + v2)).

Due to injectivity of exp⋄, we get log⋄(v1) + log⋄(v2) = log⋄(v1 ⋄ v2).

3. We have gA ⋄ gA ⊆ gA due to the grading, and thus also GA ⋄ GA ⊆ GA since GA = 1 + gA.
Furthermore, since exp⋄ is surjective, for any y ∈ GA, there is x ∈ gA such that y = exp⋄(x),
and due to 2.,

y ⋄ exp⋄(−x) = exp⋄(x) ⋄ exp⋄(−x) = exp⋄(x− x) = exp⋄(0) = 1.

Theorem 3.27. Let (A, ⋄) and (Â, ⬩) be connectedly graded algebras and Λ : AΠ → ÂΠ be an
algebra homomorphism such that Λ1 = 1 and Λπnv = πnΛv for all v ∈ AΠ, n ∈ N0. Then,

Λ exp⋄(u) = exp⬩(Λu) ∀u ∈ gA

and
Λ log⋄(v) = log⬩(Λv) ∀ v ∈ GA.

Proof. For each u ∈ gA, we have

Λ exp⋄(u) = Λ

∞∑
n=0

u⋄n

n! =
∞∑
n=0

Λu⋄n

n! =
∞∑
n=0

(Λu)⬩n

n! = exp⬩(Λu),

were the interchangeability of the infinite sum and Λ comes from the fact that Λπnv = πnΛv for
all v ∈ AΠ, n ∈ N0. For each 1 + u ∈ gA, we have

Λ log⋄(1 + u) = Λ

∞∑
n=1

(−1)n−1u⋄n

n
=
∞∑
n=1

(−1)n−1Λu⋄n

n
=
∞∑
n=1

(−1)n−1(Λu)⬩n

n
= log⬩(1 + Λu)

= log⬩(Λ(1 + u)).
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3.3.4 Truncations
This subsection prepares a detailed treatment of the notion of truncations as they are used
in Section 2.4 and in Chapter 4 [HK14]. For an algebra (A, ⋄) graded by (Ai)i, the space
A>n :=

⊕∞
m=n+1Am is a two-sided ideal of A as well as the space A>nΠ :=

∏∞
m=n+1Am is an

ideal of (AΠ, ⋄).
We assume that the following statement is standard, but did not find it in the literature we

used. Part of the statement on quotient coalgebras is given in Section III.1 [Kas95], though.

Theorem 3.28. Let I be a subspace of a vector space V and π : V → V/I be the quotient map.

(i) If (V, ⋄) is an algebra, there is a map ⋄π : V/I × V/I → V/I such that

m⋄π (π ⊗ π) = πm⋄ (3.18)

iff I is a two-sided ideal of (V, ⋄). In this case, the map is unique and (V/I, ⋄π) is an
algebra, the quotient algebra.

(ii) If (V,∆) is a coalgebra, there is a map ∆π : V/I → V/I ⊗ V/I such that

∆ππ = (π ⊗ π)∆

iff I is a two-sided coideal of (V,∆). In this case, the map is unique and (V/I,∆π) is a
coalgebra, the quotient coalgebra.

Proof.

(i) If there is such a map ⋄π, then

π(I ⋄ V + V ⋄ I) = πm⋄(I ⊗ V + V ⊗ I) = m⋄π (π ⊗ π)(I ⊗ V + V ⊗ I) = {0},

hence I ⋄ V + V ⋄ I ∈ kerπ = I, thus I is a two-sided ideal.
If I is a two sided ideal, then a map ⋄π is well-defined through

(πv1 ⋄π πv2) := π(v1 ⋄ v2).

Indeed, if πv1 = πw1 and πv2 = πw2, then

v1 ⊗ v2 − w1 ⊗ w2 ∈ ker(π ⊗ π) = kerπ ⊗ V + V ⊗ kerπ = I ⊗ V + V ⊗ I

hence
v1 ⋄ v2 − w1 ⋄ w2 ∈ I ⋄ V + V ⋄ I ⊆ I

hence π(v1 ⋄ v2) = π(w1 ⋄ w2).
Uniqueness is clear, since we just showed that the demanded equation (3.18) is sufficient
as a definition. The only thing left to show is associativity of ⋄π. If v1, v2, v3 ∈ V , then

(πv1 ⋄π πv2) ⋄π πv3 = π(v1 ⋄ v2) ⋄π πv3 = π((v1 ⋄ v2) ⋄ v3) = π(v1 ⋄ (v2 ⋄ v3))
= πv1 ⋄π π(v2 ⋄ v3) = πv1 ⋄π (πv2 ⋄π πv3).

(ii) Due to the formal duality of algebra products and coproducts, the proof of the second
statement is analogous to the proof of the first one.
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Due to the grading, we may identify both AΠ/A
>n
Π and A/A>n canonically with An :=⊕n

m=0Am. The quotient map πn : AΠ → An then restricts to the other quotient map πn�A :
A→ An and is in both cases just the canonical projection onto An. In either case, we obtain the
same quotient algebra (An, ⋄n), which is called the n-th grade truncation of the graded algebra
A, or shortly a (n-th grade) truncated algebra.

On the other hand, starting from a graded coalgebra (C,∆) graded by (Ci)i, the space C>n
is not generally a coideal of C, as well as C>nΠ does not generally fulfill the coideal property with
respect to the extended coalgebra CΠ. Fortunately though, Cn is both a subcoalgebra of C and
fulfills the subcoalgebra property with respect to the extended coalgebra CΠ. We call (Cn,∆n)
where ∆n := ∆�Cn the n-th grade truncation of the graded coalgebra (C,∆), or shortly a (n-th
grade) truncated coalgebra. We will often simply write (Cn,∆) instead of (Cn,∆n).

In the case of a graded bialgebra, we will combine the notions of truncated algebra and
truncated coalgebra to that of a truncated bialgebra.

Theorem 3.29. Let (B, ⋄,∆) be a bialgebra graded by (Bi)i over the field K with unit map
u and counit ε. Then its n-th grade truncation (Bn, ⋄n,∆n), called a (n-th grade) truncated
bialgebra, fulfills the truncated compatibility requirements

1. ∆nm⋄n = m⋄n(∆n ⊗ ∆n) (∆n is an algebra homomorphism from (Bn, ⋄n) to
(
[B ⊗

B]n, ⋄n
)
),

2. ∆nu = u⊗ u (u is a coalgebra homomorphism from (K, idK) to (Bn,∆n)),

3. εnm⋄n = εn ⊗ εn (εn is an algebra homomorphism from (Bn, ⋄n) to (K, ·)),

where m⋄n : Bn⊗Bn → Bn is the linear operator corresponding to ⋄n, the pair
(
[B⊗B]n, ⋄n

)
is

the truncation of the algebra (B⊗B, ⋄) defined in (2.9) under the grading ([B⊗B]i)i as defined
in (3.16) and m⋄n is the linear operator corresponding to ⋄n.

Proof. Let πn denote the projection of B ⊗B onto [B ⊗B]n.

∆nm⋄n(πn ⊗ πn) = ∆nπ
nm⋄ = πn∆m⋄ = πnm⋄(∆⊗∆) = m⋄n(πn ⊗ πn)(∆⊗∆)

= m⋄n(∆n ⊗∆n)(πn ⊗ πn)

Since πn ⊗ πn is a surjective map into Bn ⊗Bn, we get ∆nm⋄n = m⋄n(∆n ⊗∆n). The equation
∆nu = u⊗ u is clear since obviously ∆n1 = ∆1 = 1⊗ 1. Finally,

εnm⋄n(πn ⊗ πn) = εnπ
nm⋄ = εm⋄ = (ε⊗ ε) = (εn ⊗ εn)(πn ⊗ πn).

Theorem 3.30. Let (H, ⋄,∆,S) be a Hopf algebra graded by (Hi)i with unit map u and counit
ε. Then Sn := S�Hn fulfills the antipode property

m⋄n(Sn ⊗ id)∆n = m⋄n(id⊗ Sn)∆n = uεn

in its n-th grade truncation (Bn, ⋄n,∆n,Sn), which we call a (n-th grade) truncated Hopf alge-
bra.

Proof.

m⋄n(Sn ⊗ id)∆nπ
n = m⋄n(Sn ⊗ id)πn∆ = m⋄nπ

n(S ⊗ id)∆ = m⋄n(πn ⊗ πn)πn(S ⊗ id)∆
= πnm⋄π

n(S ⊗ id)∆ = πnm⋄(S ⊗ id)∆ = πnuε = uε = uεπn
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Note that the n-th truncated algebra (An, ⋄n) is again a graded algebra. The grading is given
by (Ani )i where Ani = Ai for i ≤ n and Ani = {0} for i > n. Hence, we get functions exp⋄n and
log⋄n as described in the previous section.

3.4 Primitive and group-like elements
Definition 3.31. (Based on Section I.5. [Man06], Section 2.3 [HK14])

1. (i) The subset of group-like elements of a coalgebra (C,∆) is given by

GrLkC := {c ∈ C \ {0}|∆c = c⊗ c}.

(ii) The subset of group-like elements of the space of formal series CΠ of a graded coalgebra
(C,∆) is given by

GrLkCΠ := {c ∈ CΠ \ {0}|∆c = c⊗ c}.

(iii) The subset of n-th grade truncated group-like elements of a coalgebra (C,∆) graded
by (Ci)i is given by

GrLkn C := {c ∈ C \ {0}|∆c = πn(c⊗ c)},

where πn : C ⊗ C → [C ⊗ C]n is the canonical projection.

2. (i) The subspace of primitive elements of a bialgebra (B, ⋄,∆) with unit element 1 is
given by

PrimB := {b ∈ B|∆b = 1⊗ b+ b⊗ 1}.

We put PrimS := S ∩ PrimB for any subspace S of B.
(ii) The subspace of primitive elements of the space of formal series BΠ of a graded

bialgebra (B, ⋄,∆) with unit element 1 is given by

PrimBΠ := {b ∈ BΠ|∆b = 1⊗ b+ b⊗ 1}.

We put PrimS := S ∩ PrimBΠ for any subspace S of BΠ.

Remark 3.32.

(i) For any c ∈ GrLkC, where (C,∆) is a coalgebra with counit ε, we have ε(c) = 1 since
c 6= 0 and

c = (ε⊗ id)∆c = (ε⊗ id)(c⊗ c) = ε(c)c

due to the counit property (2.5).
Analogously, in the case of a graded coalgebra C, we have ε(c) = 1 for all c ∈ GrLkCΠ.

(ii) For any b ∈ PrimB, where (B, ⋄,∆) is a coalgebra, we have ε(b) = 0 since

b = (ε⊗ id)∆b = (ε⊗ id)(1⊗ b+ b⊗ 1) = ε(1)b+ ε(b)1 = b+ ε(b)1.

by the counit property (2.5) and Remark 2.10.
Analogously, in the case of a graded bialgebra B, we have ε(b) = 0 for all b ∈ PrimBΠ.
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Remark 3.33. For a graded coalgebra (C,∆), we have

πn GrLkCΠ ⊆ GrLkn C.

Indeed, if c ∈ GrLkCΠ, then

∆πnc = πn∆c = πn(c⊗ c) = πn(πnc⊗ πnc)

and also πnc 6= 0 since ε(c) = 1.
A character of an algebra (A, ⋄) is an element of A∗ \{0} which is an algebra homomorphism

(Section II.4. [Man06]).

Theorem 3.34. (Based on Section 2.3 [HK14]) Let (A, ⋄) be the dual algebra of a coalgebra
(C,∆) under some duality pairing 〈 · , · 〉.

1. An element c ∈ C is group-like iff 〈 · , c〉 is a character of (A, ⋄).

2. If both (A, ⋄) and (C,∆) are graded, then c1 ∈ C is group-like iff 〈 · , c1〉 is a character of
(AΠ, ⋄) and c2 ∈ CΠ is group-like iff 〈 · , c2〉 is a character of (A, ⋄).

The proof is a basic application of the duality of products and coproducts (see Theorem 2.26)
and of the considerations in Subsection 3.3.1 and is skipped here.

Theorem 3.35. (Proposition I.7.3. [Man06]) Let (H, ⋄,∆,S) be a Hopf algebra with unit map
u, unit element 1 and counit ε. Then, Sx = −x for all x ∈ PrimH. If H is furthermore
connectedly graded by (Hi)i, we have Sx = −x for all x ∈ PrimHΠ.

Proof. (Proof of Proposition I.7.3. [Man06]) Let x ∈ PrimH be arbitrary. Then,

0 = uε(x) = m⋄(S ⊗ id)∆x = m⋄(S ⊗ id)(1⊗ x+ x⊗ 1) = S1 ⋄ x+ Sx ⋄ 1 = x+ Sx,

thus Sx = −x.
The proof for x ∈ PrimHΠ is completely analogous.

Theorem 3.36. (Proposition I.7.3. [Man06]) For a bialgebra (B, ⋄,∆), PrimB is a sub Lie
algebra of (B, b⋄).

Proof. (Proof of Proposition I.7.3. [Man06]) Let x, y ∈ PrimB be arbitrary. Then,

∆[x, y]⋄ = ∆(x ⋄ y − y ⋄ x) = ∆x ⋄ ∆y −∆y ⋄ ∆x
= (1⊗ x+ x⊗ 1) ⋄ (1⊗ y + y ⊗ 1)− (1⊗ y + y ⊗ 1) ⋄ (1⊗ x+ x⊗ 1)
= 1⊗ (x ⋄ y) + y ⊗ x+ x⊗ y + (x ⋄ y)⊗ 1− 1⊗ (y ⋄ x)− x⊗ y − y ⊗ x− (y ⋄ x)⊗ 1
= 1⊗ (x ⋄ y − y ⋄ x) + (x ⋄ y − y ⋄ x)⊗ 1 = 1⊗ [x, y]⋄ − [x, y]⋄ ⊗ 1.

Thus, [x, y]⋄ ∈ PrimB.

Theorem 3.37. (Based on Theorem 1.4 and Lemma 1.5 [Reu93]) Let (H, ⋄,∆,S) be a Hopf alge-
bra connectedly graded by (Hi)i over a field of characteristic zero, RH1 the right norm bracketing
operator of (H, b⋄) restricted to T(H1), D the derivation generated by

Dhn = nhn ∀hn ∈ Hn,
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furthermore ∗ the convolution product on L(H,H) and EH1 : (T(H1), ⊗̇) → (H, ⋄) the algebra
homomorphism generated by

EH1h1 = h1 ∀h1 ∈ H1.

Then,
RH1 = (D ∗ S)EH1 (3.19)

and
(D ∗ S)�PrimH = D�PrimH . (3.20)

Proof. (Based on the proofs of Theorem 1.4 and Lemma 1.5 [Reu93]) First of all,

(D ∗ S)EH11 = m⋄(D ⊗ S)∆1 = D1 ⋄ S1 = 0 = RH11

and, for all v ∈ H1,

(D ∗ S)EH1v = m⋄(D ⊗ S)∆v = D1⊗ Sv +Dv ⋄ S1 = v = RH1v.

Assuming we have (D ∗ S)EH1 û = RH1 û for some û ∈ T(H1) and putting u := EH1 û, we have
for all x ∈ H1 that

(D ∗ S)EH1(x ⊗̇ û) = m⋄(D ⊗ S)∆(x ⊗̇ u) =
∑
(x)

∑
(u)

D(x1 ⋄ u1) ⋄ S(x2 ⋄ u2)

=
∑
(x)

∑
(u)

(Dx1 ⋄ u1 + x1 ⋄Du1) ⋄ Su2 ⋄ Sx2

=
∑
(u)

(D1 ⋄ u1 + 1 ⋄Du1) ⋄ Su2 ⋄ Sx+
∑
(u)

(Dx ⋄ u1 + x ⋄Du1) ⋄ Su2 ⋄ S1

= −
∑
(u)

Du1 ⋄ Su2 ⋄ x+
∑
(u)

x ⋄ u1 ⋄ Su2 +
∑
(u)

x ⋄Du1 ⋄ Su2

= −(D ∗ S)u ⋄ x+ x ⋄ uε(u) + x ⋄ (D ∗ S)u = −RH1 û ⋄ x+ x ⋄RH1 û

= [x,RH1 û]⋄ = RH1(x ⊗̇ û).

Thus, we get (3.19) via induction. Since for all y ∈ PrimH we have

(D ∗ S)y = m⋄(D ⊗ S)∆y = D1⊗ Sy +Dy ⊗ S1 = Dy,

equation (3.20) also follows.

Corollary 3.38. (Based on Theorem 1.4 [Reu93]) For a Hopf algebra H connectedly graded by
(Hi)i over a field of characteristic zero, we have

Prim〈H1〉⋄ = 〈H1〉b⋄ .

Proof. (Based on the proof of Theorem 1.4 [Reu93]) Since Prim〈H1〉⋄ is a Lie algebra that
contains H1, we have 〈H1〉b⋄ ⊆ Prim〈H1〉⋄. On the other hand,

Prim〈H1〉⋄ = DPrim〈H1〉⋄ = (D ∗ S) Prim〈H1〉⋄
⊆ (D ∗ S)〈H1〉⋄ = (D ∗ S)EH1T(H1) = RH1T(H1) = 〈H1〉b⋄ .
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Theorem 3.39. (Based on Theorems 3.1 and 3.2 [Reu93]) For a Hopf algebra (H, ⋄,∆,S)
connectedly graded by (Hi)i over a field of characteristic zero, we have

PrimHΠ =
∞∏
n=1

PrimHn and exp⋄(PrimHΠ) = GrLkHΠ.

Proof. (Based on the proofs of Theorems 3.1 and 3.2 [Reu93]) If x is in PrimHΠ, then, due to
the grading,

∆πnx = πn∆x = πn(1⊗ x+ x⊗ 1) = 1⊗ πnx+ πnx⊗ 1.
On the other hand, of course, the spaces PrimHn are linearly independent and for xn ∈ PrimHn,
we have

∆
∞∑
n=1

xn =
∞∑
n=1

∆xn =
∞∑
n=1

(1⊗ xn + xn ⊗ 1) = 1⊗ (
∞∑
n=1

xn) + (
∞∑
n=1

xn)⊗ 1.

For any u ∈ PrimHΠ, using Theorem 3.26 2. based on

(1⊗ u) ⋄ (u⊗ 1) = u⊗ u = (u⊗ 1) ⋄ (1⊗ u)

and using Theorem 3.27 for the algebra homomorphism ∆ : (HΠ, ⋄)→ ((H ⊗H)Π, ⋄), we have
that

∆ exp⋄(u) = exp⋄(∆u) = exp⋄(1⊗ u+ u⊗ 1) = exp⋄(1⊗ u) ⋄ exp⋄(u⊗ 1)
= (1⊗ exp⋄(u)) ⋄ (exp⋄(u)⊗ 1) = exp⋄(u)⊗ exp⋄(u).

For any v ∈ GrLkHΠ, we have that ε(v) = 1 due to the extended counit property and thus
v ∈ GH . Hence, we may compute, again using Theorems 3.26 2. and 3.27,

∆ log⋄(v) = log⋄(∆v) = log⋄(v ⊗ v) = log⋄((1⊗ v) ⋄ (v ⊗ 1))
= log⋄(1⊗ v) + log⋄(v ⊗ 1) = 1⊗ log⋄(v) + log⋄(v)⊗ 1.

(3.21)

Corollary 3.40. (Based on Section 2.4 [HK14]) For a bialgebra (B, ⋄,∆) connectedly graded by
(Bi)i over a field of characteristic zero, we have

exp⋄n(PrimBn) = πn GrLkBΠ = GrLknB.

Proof. For all v ∈ GrLknH, we have, by Theorem 3.27 and the same calculation as in (3.21),
that

∆ log⋄n(v) = log⋄
n
(∆v) = log⋄

n
(πn(v ⊗ v)) = πn log⋄(v ⊗ v) = πn(1⊗ log⋄(v) + log⋄(v)⊗ 1)

= 1⊗ πn log⋄(v) + πn log⋄(v)⊗ 1 = 1⊗ log⋄n(v) + log⋄n(v)⊗ 1.

Thus, log⋄n(GrLknH) ⊆ PrimBn, implying GrLknH ⊆ exp⋄n(PrimBn). Again applying The-
orem 3.27, this time for the exponential map, we compute

exp⋄n(PrimBn) = exp⋄n(πn PrimBΠ) = πn exp⋄(PrimBΠ) = πn GrLkBΠ.

Altogether, using Remark 3.33, we finally get

GrLknH ⊆ exp⋄n(PrimBn) = πn GrLkBΠ ⊆ GrLknH.
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Example 3.41.

1. In the case of polynomials, due to Corollary 3.38,

PrimPd = Prim〈Pd,1〉• = 〈Pd,1〉b• = Pd,1

since • is commutative and hence also

Prim(Pd)Π = Pd,1 = span{Xi|1 ≤ i ≤ d}.

Theorem 3.39 then implies GrLk(Pd)Π = {exp•(
∑d
i=1 aiXi)|(ai)i ⊂ R}.

2. For the concatenation algebra, we again have 〈V 〉⊗̇ = T(V ), hence

Prim(T(V ),∆
�

) = 〈V 〉b⊗̇ .

The elements of Prim(T(V ),∆
�

) are called Lie polynomials over V (Section 1.3 [Reu93]).
We put T((V )) := T(V )Π and call

Prim(T((V )),∆
�

) =
∞∏
i=1

(
〈V 〉b⊗̇ ∩ V

⊗̇i)
the space of over V (Section 3.1 [Reu93]1).

3. For the shuffle algebra, 〈V 〉� is a proper subspace of T(V ). Therefore, we may only
conclude from Corollary 3.38 that

Prim(〈V 〉�,∆⊗̇) = 〈V 〉b� = V,

which follows from � being commutative. But, looking at (3.15), we see that every sum-
mand in the expansion of ∆⊗̇u for some element of the form u = v1 ⊗̇ · · · ⊗̇ vn, vi ∈ V is
specific to u, hence none of those summands can be canceled out by ∆⊗̇w for an element w
of the same form as u, but linearly independent. Hence, there cannot be primitive elements
of ∆⊗̇ in V ⊗̇n for n > 1. Therefore,

Prim(T((V )),∆⊗̇) = Prim(T(V ),∆⊗̇) = V

and, by Theorem 3.39, we get GrLk(T((V )),∆⊗̇) = exp
�

(V ).

Interestingly, the example of (T((K2)), ⊗̇,∆
�

), K being a field of characteristic zero, can be
used to show the following.

Theorem 3.42. (Based on Corollaries 3.3 and 3.4 [Reu93]) For an algebra (A, ⋄) connectedly
graded by (Ai)i over a field of characteristic zero, exp⋄(W ) is a subgroup of (GA, ⋄) for any sub
Lie algebra W =

∏∞
i=0(W ∩Ai) of (gA, b⋄).

Proof. (Based on the proof of Corollary 3.3 [Reu93]) Let {e1, e2} be a basis of K2. Then, we
of course have e1, e2 ∈ Prim(T((K2)),∆

�
) and hence exp(e1), exp(e2) ∈ GrLk(T((K2)),∆

�
). We

compute

∆
�

(exp⊗̇(e1) ⊗̇ exp⊗̇(e2)) = ∆
�

exp⊗̇(e1) ⊗̇∆
�

exp⊗̇(e2)
= (exp⊗̇(e1)⊗ exp⊗̇(e1)) ⊗̇ (exp⊗̇(e2)⊗ exp⊗̇(e2))
= (exp⊗̇(e1) ⊗̇ exp⊗̇(e2))⊗ (exp⊗̇(e1) ⊗̇ exp⊗̇(e2)).

1Note that in the case where V is infinite dimensional, the space of Lie series defined in [Reu93] is strictly
larger than the one presented here. According to our definition, Lie series always reduce to finite sums when
projected down to Tn(V ), which is not the case in [Reu93]. The definitions agree if V is finite dimensional.
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Thus,

exp⊗̇(e1) ⊗̇ exp⊗̇(e2) ∈ GrLk(T((K2)),∆
�

) = exp⊗̇(Prim T((K2))) = exp⊗̇((〈e1, e2〉b⊗̇)Π)

Now, let v1, v2 ∈ exp⋄(W ) be arbitrary. Let Λ : (T((K2)), ⊗̇) → (AΠ, ⋄) be the unique algebra
homomorphism such that Λe1 = log⋄ v1, Λe2 = log⋄ v2 and πnΛx = Λπnx for all x ∈ T((K2)).
Then,

Λ exp⊗̇(ei) = Λ

∞∑
n=0

e⊗̇ni
n! =

∞∑
n=0

Λ(e⊗̇ni )
n! =

∞∑
n=0

(Λei)⋄n

n! = exp⋄(Λei) = vi,

therefore
v1 ⋄ v2 = (Λ exp⊗̇(e1)) ⋄ (Λ exp⊗̇(e2)) = Λ(exp⊗̇(e1) ⊗̇ exp⊗̇(e2))

and finally

v1 ⋄ v2 ∈ Λ exp⊗̇((〈e1, e2〉b⊗̇)Π) = exp⋄(Λ(〈e1, e2〉b⊗̇)Π) = exp⋄((Λ〈e1, e2〉b⊗̇)Π)
= exp⋄((〈log⋄ v1, log⋄ v2〉b⋄)Π) ⊆ exp⋄(W ).

Since for any v ∈ exp⋄(W ), we have v⋄−1 = exp⋄(− log⋄(v)) ∈ exp⋄(W ), the proof of exp⋄(W )
being a subgroup is complete.

Remark 3.43. The Lie series log⊗̇(exp⊗̇(a)⊗̇exp⊗̇(b)) (Corollary 3.4 [Reu93]) is called the Baker-
Campbell-Hausdorff series of a, b ∈ Prim(T((V )),∆

�
). See Chapter 3 [Reu93] for more on this

series.
Remark 3.44. (Based on Corollary 3.3 [Reu93]) We now especially know that for every Hopf
algebra (H, ⋄,∆,S) connectedly graded by (Hi)i, the set of group-like elements GrLkHΠ =
exp⋄ PrimHΠ is a subgroup of (GH , ⋄). Since

x ⋄ Sx = m⋄(id⊗ S)(x⊗ x) = m⋄(id⊗ S)∆x = uε(x) = u(1) = 1,

where we made use of the antipode property (2.14) and of Remark 3.32, we have x⋄−1 = Sx for
all x ∈ GrLkHΠ.
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3.5 Connes-Kreimer Hopf algebra of trees and forests
3.5.1 Trees and forests
In the following definition, we formally introduce the set of forests FI and the subset of trees
TI labeled or decorated by indices from some set I.

Definition 3.45. (Based on Section 2.2 [HK14]) For a non-empty set I let TI ⊂ FI be sets,
1 ∈ FI an element, � : FI × FI → FI an associative and commutative binary operation,
|·| : FI → N0 a function and b·ci : FI → TI , i ∈ I injective functions such that the following
conditions are fulfilled.

(i) 1� ζ = ζ � 1 = ζ ∀ ζ ∈ FI ,

(ii) TI is the disjoint union of the sets bFIci, i ∈ I,

(iii) For every ζ ∈ FI \ {1}, there is an n ∈ N and τ1, . . . , τn ∈ TI such that ζ = τ1 � · · · � τn
and this factorization is unique up to commutativity,

(iv) |ζ1 � ζ2| = |ζ1|+ |ζ2| ∀ ζ1, ζ2 ∈ FI ,

(v) |bζci| = |ζ|+ 1 ∀ ζ ∈ FI , i ∈ I,

(vi) |ζ| = 0 =⇒ ζ = 1.

We call 1 the empty forest. If I consists only of one element j, we put F := F{j}, T := T{j}
and b·c := b·cj and call F the set of undecorated forests and T the set of undecorated trees.

3.5.2 Commutative Hopf algebra
Let FI,n :=

{
ζ ∈ FI

∣∣|ζ| = n
}
and TI,n := TI ∩FI,n. We extend � bilinearly from FI ×FI to

〈FI〉 × 〈FI〉 and all b·ci linearly from FI to 〈FI〉.

Lemma 3.46. (〈FI〉,�) is a commutative unitary algebra connectedly graded by (〈FI,n〉)n.

Definition 3.47. (Equations (48) to (50) [CK98], Equation (2.3) [HK14]) Let ∆? : 〈FI〉 →
〈FI〉 ⊗ 〈FI〉 be the linear map recursively generated by

∆?1 := 1⊗ 1, ∆?bζci := bζci ⊗ 1 + (id⊗ b·ci)∆?ζ, ∆?(ζ1 � ζ2) := ∆?ζ1 �∆?ζ2, (3.22)

n Fn → Tn+1
0 1 7→
1 7→

2 7→

3 7→

Table 3.1: The action of b·c.
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where ζ, ζ1, ζ2 ∈ FI and � is again the canonical associative product on 〈FI〉 ⊗ 〈FI〉 (cf. (2.9))
generated by

(ζ1 ⊗ η1)� (ζ2 ⊗ η2) := (ζ1 � ζ2)⊗ (η1 � η2).
Furthermore, let ε ∈ 〈FI〉∗ be generated by

ε(ζ) := δ1,ζ , ζ ∈ FI .

Example 3.48. In order to find the value of ∆? 3
2

1
2
3 , we first compute generally those for the first

two linear trees

∆? i = i⊗ 1 + (id⊗ b·ci)∆?1 = i⊗ 1 + 1⊗ i,

∆? j
i = j

i ⊗ 1 + (id⊗ b·cj)∆? i = j
i ⊗ 1 + i⊗ j + 1⊗ j

i,

and then specifically

∆? 3
2

2
3 = ∆? 2

3�∆? 3
2

= 3
2

2
3 ⊗ 1 + 3

2
3 ⊗ 2 + 3

2⊗ 2
3 + 2

3
2 ⊗ 3 + 2 3⊗ 2 3 + 2⊗ 2

3
3 + 2

3⊗ 3
2

+ 3⊗ 3
2

2 + 1⊗ 3
2

2
3 ,

∆? 3
2

1
2
3 = 3

2
1

2
3 ⊗ 1 + (id⊗ b·c1)∆? 3

2
2
3

= 3
2

1
2
3 ⊗ 1 + 3

2
2
3 ⊗ 1 + 3

2
3 ⊗ 1

2 + 3
2⊗ 1

2
3 + 2

3
2 ⊗ 1

3 + 2 3⊗ 3
1

2 + 2⊗ 2
3

1
3 + 2

3⊗ 1
3
2

+ 3⊗ 3
2

1
2 + 1⊗ 3

2
1

2
3
.

By identification of the labels 2 and 3 we furthermore get

∆? 2
2

1
2
2 = 2

2
1

2
2 ⊗ 1 + 2

2
2
2 ⊗ 1 + 2 2

2
2 ⊗ 1

2 + 2 2
2⊗ 1

2
2 + 2 2⊗ 2

1
2 + 2 2⊗ 2

2
1

2 + 1⊗ 2
2

1
2
2
,

and identifying all the labels we have the undecorated case

∆? = ⊗ 1 + ⊗ + 2 ⊗ + 2 ⊗ + ⊗ + 2 ⊗ + 1⊗ .

Theorem 3.49. (Based on Equations (52) and (53) [CK98], Section 5.1 [Foi02], Section 2.2
[HK14]) (〈FI〉,�,∆?,S?�) is a commutative Hopf algebra connectedly graded by (〈FI,n〉)n with
counit ε, where the linear map S?� : 〈FI〉 → 〈FI〉 is recursively generated by

S?�1 := 1, S?�(ζ1 � ζ2) := S?�ζ1 � S?�ζ2, S?�bζci := −m�(S?� ⊗ b·ci)∆?ζ. (3.23)

Proof.
1. (〈FI〉,∆?) is a coalgebra. (Section 5.1 [Foi02]) Obviously, (∆? ⊗ id)∆?1 = (id ⊗∆?)∆?1.

If ζ1, ζ2 ∈ FI are such that (∆? ⊗ id)∆?ζi = (id⊗∆?)∆?ζ, Lemma 2.11 implies that

(∆? ⊗ id)∆?(ζ1 � ζ2) = (id⊗∆?)∆?(ζ1 � ζ2)

since ∆? is an algebra homomorphism by definition (see (3.22)). Finally, if (∆?⊗ id)∆?ζ =
(id⊗∆?)∆?ζ, we also have

(∆? ⊗ id)∆?bζci = bζci ⊗ 1⊗ 1 + (id⊗ b·ci ⊗ u)∆?ζ + (id⊗ id⊗ b·ci)(∆? ⊗ id)∆?ζ

= bζci ⊗ 1⊗ 1 + (id⊗ b·ci ⊗ u)∆?ζ + (id⊗ id⊗ b·ci)(id⊗∆?)∆?ζ

= bζci ⊗ 1⊗ 1 + (id⊗∆?)(id⊗ b·ci)∆?ζ = (id⊗∆?)∆?bζci.

Hence, we get via induction that (∆? ⊗ id)∆?ζ = (id ⊗ ∆?)∆?ζ for all ζ ∈ FI and by
linearity we conclude that ∆? is coassociative.
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2. ε is a counit. First of all, we have (ε ⊗ id)∆?1 = ε(1)1 = 1 = (id ⊗ ε)∆?1. If we assume
that (ε⊗ id)∆?ζ = ζ = (id⊗ ε)∆?ζ holds for some ζ ∈ 〈FI〉, we get

(ε⊗ id)∆?bζci = ε(bζci)1 + b·ci(ε⊗ id)∆?ζ = bζci

and
(id⊗ ε)∆?bζci = ε(1)bζci + (id⊗ εb·ci)∆?ζ = bζci,

since εb·ci = 0 by definition. Finally, if we assume that for some ζ1, ζ2 ∈ 〈FI〉 we have
(ε⊗ id)∆?ζj = ζj = (id⊗ ε)∆?ζj , we get

(ε⊗ id)∆?(ζ1 � ζ2) = ζ1 � ζ2 = (id⊗ ε)∆?(ζ1 � ζ2)

by again applying Lemma 2.11, since ε is an algebra homomorphism. Indeed,

ε(ζ1)ε(ζ2) = δ1,ζ1δ1,ζ2 = δ1,ζ1�ζ2 = ε(ζ1 � ζ2).

Hence, by induction the equation

(ε⊗ id)∆?ζ = ζ = (id⊗ ε)∆?ζ

holds for all ζ ∈ 〈FI〉. The counit property (2.5) then follows via linearity.

3. (〈FI〉,�,∆?) is a bialgebra. We have ∆?(ζ1 � ζ2) = ∆?ζ1 �∆?ζ2 for all ζ1, ζ2 ∈ 〈FI〉 and
∆?1 = 1⊗ 1 by definition of ∆?. Also, ε is an algebra homomorphism as we already saw.
Thus, (〈FI〉,�,∆?) is a bialgebra.

4. (〈FI〉,�,∆?,S?�) is a connected graded Hopf algebra. The fact that (〈FI,n〉)n is a grading
for the bialgebra (〈FI〉,�,∆?) is again easily shown by an induction over the recursive
definition of ∆?. It is also connected since 〈FI,0〉 = 〈1〉. By Theorem 2.20 we thus have
that (〈FI〉,�,∆?,S) is a connected graded Hopf algebra with some unique antipode S.
Using εb·ci = 0, the antipode property (2.14) and (3.22), we get

Sbζci = −uε(bζci) + Sbζci = −m�(S ⊗ id)∆?bζci + Sbζci = −m�(S ⊗ b·ci)∆?ζ.

Since the antipode is an algebra antimorphism by Theorem 2.16 and � is commutative, we
also have that

S(ζ1 � ζ2) = Sζ1 � Sζ2
and S1 = 1. Thus, S is given by the recursion (3.23), i.e. S = S?� .

Remark 3.50. Due to Theorem 2.20, we may instead of the second expression in (3.23) use

S?�bζci := −bζci −m�(id⊗ S?�)∆̃?bζci,

which has the advantage that here, we do not need to calculate the antipode values for forests
with more than one tree in order to get the antipode values for trees.

Theorem 3.51. (Based on Equation (51) [CK98], Equation (4) [Foi02], Section II.9.3. [Man06],
Remark 2.9. [HK14]) ∆? admits the representation

∆?ζ =
∑

(C,T )∈Cuts(ζ)

cζ(C, T ) C ⊗ T, (3.24)
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where (Cuts (ζ))ζ∈FI
is a family of finite subsets of FI ×FI recursively defined by

Cuts (1) := {(1,1)}, Cuts (bζci) :=
{

(C, bT ci)
∣∣(C, T ) ∈ Cuts (ζ)

}
∪ {(bζci,1)},

Cuts (ζ1ζ2) :=
{

(C1C2, T1T2)
∣∣(C1, T1) ∈ Cuts (ζ1) , (C2, T2) ∈ Cuts (ζ2)}

and (cζ(·, ·))ζ∈FI
is a family of functions (Cuts (ζ)→ N)ζ∈FI

recursively defined by

cτ (τ,1) := 1, cbζci(C, bT ci) := cζ(C, T ) ,

cζ1ζ2(C, T ) :=
∑

(C1,T1)∈Cuts(ζ1), (C2,T2)∈Cuts(ζ2):
C1C2=C, T1T2=T

cζ1(C1, T1) cζ2(C2, T2) .

Proof. First of all, we have

∆?1 = 1⊗ 1 = c1(1,1) 1⊗ 1 =
∑

(C,T )∈Cuts(1)

cζ(C, T ) C ⊗ T.

Assuming ∆?ζ admits the representation (3.24) for some ζ ∈ FI , we get

∆?bζci = bζci ⊗ 1 + (id⊗ b·ci)∆?ζ = cbζci(bζci,1) bζci ⊗ 1 +
∑

(C,T )∈Cuts(ζ)

cζ(C, T ) C ⊗ bT ci

= cbζci(bζci,1) bζci ⊗ 1 +
∑

(C,T )∈Cuts(ζ)

cbζci(C, bT ci) C ⊗ bT ci

=
∑

(C̄,T̄ )∈Cuts(bζci)

cbζci
(
C̄, T̄

)
C̄ ⊗ T̄ .

Assuming ∆?ζ1 and ∆?ζ2 admit the representation (3.24) for some ζ1, ζ2 ∈ FI , we get

∆?(ζ1ζ2) = ∆?ζ1 �∆?ζ2 =
∑

(C1,T1)∈Cuts(ζ1)

∑
(C2,T2)∈Cuts(ζ2)

cζ1(C1, T1) cζ2(C2, T2) C1C2 ⊗ T1T2

=
∑

(C1,T1)∈Cuts(ζ1)

∑
(C2,T2)∈Cuts(ζ2)

cζ1ζ2(C1C2, T1T2) C1C2 ⊗ T1T2

=
∑

(C,T )∈Cuts(ζ1ζ2)

cζ1ζ2(C, T ) C ⊗ T.

The claim then follows inductively.

Referring to Section 2. [CK98], Section 4.1 [Foi02] and Section II.9.3. [Man06], we may inter-
pret the elements of Cuts (ζ) as the set of all cuts (C, T ) of the forest ζ into an upper part, the
crown C, and a lower part, the trunk T . Such cuts are called admissible cuts. The coefficient
cζ(C, T ) then gives the number of possibilities to draw the cut (C, T ) into a fixed planar drawing
of the forest ζ. The special case (1, ζ) ∈ Cuts (ζ) is called the empty cut and (ζ,1) ∈ Cuts (ζ) is
called the full cut.

Theorem 3.52. S?� admits the representation

S?�ζ =
∑

S∈Splits(ζ)

sζ(S)S, (3.25)
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where (Splits (ζ))ζ∈FI
is a family of finite subsets of FI recursively defined by

Splits (1) := {1}, Splits (ζ) :=
{
CS
∣∣∃T 6= ζ : S ∈ Splits (T ) , (C, T ) ∈ Cuts (ζ)

}
and (sζ(·))ζ∈FI

is a family of functions (Splits (ζ)→ Z)ζ∈FI
recursively defined by

s1(1) := 1, sbζci
(
S̄
)

:= −
∑

(C,T )∈Cuts(bζci), S∈Splits(T ):
T 6=bζci, CS=S̄

sT (S) cbζci(C, T ) ,

sζ1ζ2(S) :=
∑

S1∈Splits(ζ1), S2∈Splits(ζ2):
S1S2=S

sζ1(S1) sζ2(S2) .

Proof.

1. Splits (ζ1ζ2) = Splits (ζ1)� Splits (ζ2) for all ζ1, ζ2 ∈ FI . We first have

Splits (1)� Splits (ζ) = {1} � Splits (ζ) = Splits (ζ) = Splits (1ζ)

for all ζ ∈ FI , in particular for all trees ζ.

Assuming the claim holds for all ζ1, ζ2 ∈ FI with |ζ1|+ |ζ2| ≤ n, we get for all η1, η2 ∈ FI

with |η1|+ |η2| ≤ n+ 1 that

Splits (η1η2) =
{
CS
∣∣∃T 6= η1η2 : S ∈ Splits (T ) , (C, T ) ∈ Cuts (η1η2)

}
=
{
C1C2S

∣∣∃T1T2 6= η1η2 : S ∈ Splits (T1T2) , (C1, T1) ∈ Cuts (η1) ,
(C2, T2) ∈ Cuts (η2)

}
=
{
C1C2S1S2

∣∣∃T1T2 6= η1η2 : S1 ∈ Splits (T1) , S2 ∈ Splits (T2) ,
(C1, T1) ∈ Cuts (η1) , (C2, T2) ∈ Cuts (η2)

}
=
{
C1C2S1S2

∣∣∃T1 6= η1, T2 6= η2 : S1 ∈ Splits (T1) , S2 ∈ Splits (T2) ,
(C1, T1) ∈ Cuts (η1) , (C2, T2) ∈ Cuts (η2)

}
= Splits (η1)� Splits (η2) ,

where in the third equality we used the inductive assumption with the fact that for (C, T ) ∈
Cuts (ζ), we have |T | ≥ |ζ| if and only if T = ζ. In order to see the ⊆ part of the fourth
equality, the case of either T1 = η1 or T2 = η2 needs further explanation. Without loss of
generality, assume T1 = η1, then we have C1 = 1 and since S1 ∈ Splits (T1) = Splits (η1),
there is (C ′1, T ′1) ∈ Cuts (η1) and S′1 ∈ Splits (T ′1) such that T ′1 6= η1 and C ′1S′1 = S1 = C1S1.
Hence, this case is indeed included in what comes after the fourth equality.

The claim then follows by induction over n.

2. S?� admits the given representation. First of all,

S?�1 = 1 = s1(1) 1 =
∑

η∈Splits(1)

sζ(η) η.
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Assuming S?�ζ admits the representation (3.25) for some ζ ∈ FI , we get

S?�bζci = −bζci −m�(id⊗ S?�)∆̃?bζci = −
∑

(C,T )∈Cuts(bζci):
T 6=bζci

cbζci(C, T )C � S?�T

= −
∑

(C,T )∈Cuts(bζci):
T 6=bζci

∑
S∈Splits(T )

sT (S) cbζci(C, T )CS

= −
∑

S̄∈Splits(bζci)

∑
(C,T )∈Cuts(bζci), S∈Splits(T ):

T 6=bζci, CS=S̄

sT (S) cbζci(C, T )CS

=
∑

S̄∈Splits(bζci)

sbζci
(
S̄
)
S̄.

Assuming S?�ζ1 and S?�ζ2 admit the representation (3.25) for some ζ1, ζ2 ∈ FI , we get

S?�(ζ1ζ2) = S?�ζ1 � S?�ζ2 =
∑

S1∈Splits(ζ1)

∑
S2∈Splits(ζ2)

sζ1(S1) sζ2(S2)S1S2

=
∑

S∈Splits(ζ1ζ2)

∑
S1∈Splits(ζ1), S2∈Splits(ζ2):

S1S2=S

sζ1(S1) sζ2(S2)S1S2 =

=
∑

S∈Splits(ζ1ζ2)

∑
S1∈Splits(ζ1), S2∈Splits(ζ2):

S1S2=S

sζ1(S1) sζ2(S2)S =
∑

S∈Splits(ζ1ζ2)

sζ1ζ2(S)S.

For a tree τ , each forest η, except τ itself, in the set Splits (τ) is achieved by multiplying all
the forests resulting from a finite sequence of consecutive admissible cuts of τ . The coefficient
sτ (η) then gives the number of possibilities to draw such sequences of odd length into a fixed
planar drawing of the tree τ , minus the number of possibilities with even length, where the order
of the cuts in the sequence doesn’t count, each cut may only appear once in the sequence and
empty as well as full cuts are excluded. For the special case τ ∈ Splits (τ), we have sτ (τ) = −1.

3.5.3 Cocommutative dual Hopf algebra
Definition 3.53. Let ? : 〈FI〉 × 〈FI〉 be the bilinear map generated by

C ? T :=
∑
ζ∈FI :

(C,T )∈Cuts(ζ)

cζ(C, T ) ζ, C, T ∈ FI ,

furthermore ∆� : 〈FI〉 → 〈FI〉 ⊗ 〈FI〉 the linear map generated by

∆�ζ :=
∑

ζ1,ζ2∈FI :
ζ1ζ2=ζ

ζ1 ⊗ ζ2, ζ ∈ FI

and S�? : 〈FI〉 → 〈FI〉 the linear map generated by

S�? η :=
∑
ζ∈FI :

η∈Splits(ζ)

sζ(η) ζ, ζ ∈ FI
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Finally, let 〈 · , · 〉 : 〈FI〉 × 〈FI〉 → R be bilinearly generated by

〈ζ, η〉 := δζ,η, ζ, η ∈ FI .

As noted in Section 2.2 [HK14], the product ? is often called Grossman-Larson product, where
the name refers to the paper [GL89].

Theorem 3.54. (Based on Section 2.2 [HK14]) (〈FI〉, ?,∆�,S�? ) is the cocommutative dual
Hopf algebra of (〈FI〉,�,∆?,S?�) under the duality pairing 〈 · , · 〉. It is connectedly graded by
(〈FI,n〉)n, too.

Proof.

1. m? is the dual operator of ∆?. For all C, T, η ∈ FI , we have

〈m?(C ⊗ T ), η〉 =
∑
ζ∈FI :

(C,T )∈Cuts(ζ)

cζ(C, T ) δζ,η =
∑

(C̄,T̄ )∈Cuts(η)

cη(C, T ) δC,C̄δT,T̄

=
∑

(C̄,T̄ )∈Cuts(η)

cη
(
C̄, T̄

)
δC,C̄δT,T̄ =

∑
(C̄,T̄ )∈Cuts(η)

cη
(
C̄, T̄

)
〈C ⊗ T, C̄ ⊗ T̄ 〉

= 〈C ⊗ T,∆?η〉.

2. ∆� is the dual operator of m�. For all ζ, η1, η2 ∈ FI , we have

〈∆�ζ, η1 ⊗ η2〉 =
∑

ζ1,ζ2∈FI :
ζ1ζ2=ζ

δζ1,η1δζ2,η2 = δζ,η1η2 = 〈ζ, η1 � η2〉.

3. S�? is the dual operator of S?� . For all η, ζ ∈ FI , we have

〈S�? η, ζ〉 =
∑

ζ′∈FI :
η∈Splits(ζ′)

sζ′(η) δζ′,ζ =
∑

η′∈Splits(ζ)

sζ(η) δη′,η =
∑

η′∈Splits(ζ)

sζ(η′) δη′,η = 〈η,S?�ζ〉.

4. (〈FI〉, ?,∆�,S�? ) is the cocommutative dual Hopf algebra of (〈FI〉,�,∆?,S?�). We ob-
viously have that u is the dual operator of ε and vice versa. Since (〈FI〉,�,∆?,S?�) is a
commutative Hopf algebra with unit map u and counit ε according to Theorem 3.49, we get
from the first three steps using Theorem 2.26 that (〈FI〉, ?,∆�,S�? ) is its cocommutative
dual Hopf algebra with unit map u and counit ε.

5. (〈FI〉, ?,∆�,S�? ) is graded. ? is graded by (〈FI,n〉)n since |C| + |T | = |ζ| for all ζ ∈ FI

and (C, T ) ∈ Cuts (ζ). ∆� is graded since |ζ1| + |ζ2| = |ζ1ζ2| for all ζ1, ζ2 ∈ FI . S�? is
graded since |S| = |η| for all η ∈ FI and S ∈ Splits (η).

Obviously, Prim(〈FI〉,∆�) = 〈TI〉. Hence, GrLk(〈FI〉Π,∆�) = exp?〈TI〉Π. As noted in
Section 2.3 [HK14], this group is also called the Butcher group.
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3.5.4 Homomorphisms between words and forests
Based on the terminologies used in [HK14] and in [Reu93], we call

WI := {1} ∪ {ei1···in |n ∈ N, ij ∈ I}, ea 6= eb if a 6= b,

the set of words over the alphabet I, where 1 is called the empty word. Define |·| : WI → N0
via |ei1···in | := n and |1| := 0. The number |w| is called the length of the word w. Put
Wn
I := {w ∈ WI : |w| ≤ n}. We may then identify T(〈I〉) with 〈WI〉 and Tn(〈I〉) with 〈Wn

I 〉 via
ei1···im := ei1 ⊗̇ · · · ⊗̇ eim . The duality pairing 〈 · , · 〉 : WI ×WI → R generated by

〈w1, w2〉 := δw1,w2 , w1, w2 ∈ WI

is then also an inner product.

Theorem 3.55. (Section 4.1 [HK14]) The linear operator

φ : (〈FI〉,�,∆?,S?�)→ (〈WI〉,�,∆⊗̇,S⊗̇� )

recursively generated by

φ(1) := 1, φ(bζci) := φ(ζ) ⊗̇ ei, φ(ζ1ζ2) := φ(ζ1)� φ(ζ2) (3.26)

is a Hopf algebra homomorphism. The linear operator φ̂ : (〈WI〉,∆⊗̇) → (〈FI〉,∆?) recursively
generated by

φ̂(1) := 1, φ̂(w ⊗̇ ei) := bφ̂(w)ci
is a coalgebra monomorphism. We have φφ̂ = id.

Proof. Putting Lix := x ⊗̇ ei for all x ∈ 〈WI〉, we get directly from the definition (3.15) that

∆⊗̇Liw = ∆⊗̇(w ⊗̇ ei) = (w ⊗̇ ei)⊗ 1 +
⊗̇∑

(w)

w1 ⊗ (w2 ⊗̇ e1) = Liw ⊗ 1 + (id⊗ Li)∆⊗̇w.

Since φφ̂1 = 1 and φφ̂(w ⊗̇ ei) = φ(bφ̂(w)ci) = φφ̂(w) ⊗̇ ei, we get φφ̂ = id inductively. In
particular, this shows that φ̂ is injective.

1. φ is a Hopf algebra homomorphism. φ is obviously an algebra homomorphism by the third
equation in (3.26). Also, we have φu = u by definition and εφζ = δφζ,1 = δζ,1 = εζ for all
ζ ∈ FI . By Theorem 2.14, it only remains to show that φ is a coalgebra homomorphism.
For this, we first have

∆⊗̇φ(1) = ∆⊗̇1 = 1⊗ 1 = (φ⊗ φ)(1⊗ 1) = (φ⊗ φ)∆?1.

Assuming we have ∆⊗̇φ(ζ) = (φ⊗ φ)∆?ζ for some ζ ∈ FI , we get

(φ⊗ φ)∆?bζci = (φ⊗ φ)(bζci ⊗ 1) + (φ⊗ φ)(id⊗ b·ci)∆?ζ

= Liφ(ζ)⊗ 1 + (id⊗ Li)(φ⊗ φ)∆?ζ = Liφ(ζ)⊗ 1 + (id⊗ Li)∆⊗̇φ(ζ)
= ∆⊗̇Liφ(ζ) = ∆⊗̇φ(bζci).

Assuming we have ∆⊗̇φ(ζ1) = (φ⊗φ)∆?ζ1 and ∆⊗̇φ(ζ2) = (φ⊗φ)∆?ζ2 for some ζ1, ζ2 ∈ FI ,
we get

∆⊗̇φ(ζ1ζ2) = ∆⊗̇φ(ζ1)�∆⊗̇φ(ζ2) = (φ⊗ φ)∆?ζ1 � (φ⊗ φ)∆?ζ2

= (φ⊗ φ)(∆?ζ1 �∆?ζ2) = (φ⊗ φ)∆?(ζ1ζ2).
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2. φ̂ is a coalgebra homomorphism. As always, ∆?φ̂(1) = (φ̂ ⊗ φ̂)∆⊗̇1 follows immediately.
Assuming we have ∆?φ̂(w) = (φ̂⊗ φ̂)∆⊗̇w for some w ∈ WI , we get

∆?φ̂(w ⊗̇ ei) = ∆?bφ̂(w)ci = bφ̂(w)ci ⊗ 1 + (id⊗ b·ci)∆?φ̂(w)
= φ̂(w ⊗̇ ei)⊗ 1 + (id⊗ b·ci)(φ̂⊗ φ̂)∆⊗̇w
= (φ̂⊗ φ̂)(Liw ⊗ 1) + (φ̂⊗ φ̂)(id⊗ Li)∆⊗̇w = (φ̂⊗ φ̂)∆⊗̇Liw.

Theorem 3.56. (Lemma 4.9. [HK14] and its proof)
The map ψ : (〈FI〉,�,∆?,S?�)→ (T(〈TI〉),�,∆⊗̇,S⊗̇� ) recursively linearly generated by

ψ(1) := 1, ψ(bζci) := m⊗̇(ψ ⊗ b·ci)∆?ζ, ψ(ζ1ζ2) := ψ(ζ1)� ψ(ζ2) (3.27)

is a Hopf algebra monomorphism.

Proof.

1. ψ is a Hopf algebra homomorphism. ψ is obviously an algebra homomorphism by the third
equation in (3.27). We first have

∆⊗̇ψ(1) = ∆⊗̇1 = 1⊗ 1 = (ψ ⊗ ψ)(1⊗ 1) = (ψ ⊗ ψ)∆?1.

Assuming we have ∆⊗̇ψ(ζ) = (ψ ⊗ ψ)∆?ζ for some ζ ∈ FI , we get

∆⊗̇ψ(bζci) = ∆⊗̇m⊗̇(ψ ⊗ b·ci)∆?ζ = m⊗̇(∆⊗̇ ⊗ u⊗ id)(ψ ⊗ b·ci)∆?ζ + ψ(bζci)⊗ 1
= m⊗̇(ψ ⊗ ψ ⊗ u⊗ b·ci)(∆? ⊗ id)∆?ζ + ψ(bζci)⊗ 1
= m⊗̇(ψ ⊗ ψ ⊗ u⊗ b·ci)(id⊗∆?)∆?ζ + ψ(bζci)⊗ 1
= (ψ ⊗m⊗̇)(id⊗ ψ ⊗ b·ci)(id⊗∆?)∆?ζ + ψ(bζci)⊗ 1
= (ψ ⊗ ψ)(id⊗ b·ci)∆?ζ + ψ(bζci)⊗ 1
= (ψ ⊗ ψ)∆?bζci.

Assuming we have ∆⊗̇ψ(ζ1) = (ψ ⊗ ψ)∆?ζ1 and ∆⊗̇ψ(ζ2) = (ψ ⊗ ψ)∆?ζ2 for some ζ1, ζ2 ∈
FI , we get

∆⊗̇ψ(ζ1 � ζ2) = ∆⊗̇ψ(ζ1)�∆⊗̇ψ(ζ2) = (ψ ⊗ ψ)∆?ζ1 � (ψ ⊗ ψ)∆?ζ2

= (ψ ⊗ ψ)(∆?ζ1 �∆?ζ2) = (ψ ⊗ ψ)∆?(ζ1 � ζ2).

2. ψ is injective. See the proof of Lemma 4.9. [HK14].
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Chapter 4

Rough paths

4.1 Geometric rough paths
We shortly write Wd :=W{1,...,d} for all d ∈ N. Define

Gd := GrLk(T((Rd)),∆
�

) = {g ∈ T((Rd))|∆
�
g = g ⊗ g} = exp⊗̇(Ld),

where
Ld := Prim(T((Rd)),∆

�
) = {l ∈ T((Rd))|∆

�
l = 1⊗ l + l ⊗ 1} =

(
〈Rd〉b⊗̇

)
Π,

as well as

Gn
d := GrLkn(T(Rd),∆

�
) = {g ∈ Tn(Rd)|∆

�
g = πn(g ⊗ g)} = πnGd = exp⊗̇n(Lnd ),

where
Lnd := Prim(Tn(Rd),∆

�
) = {l ∈ Tn(Rd)|∆

�
l = 1⊗ l + l ⊗ 1} = πn〈Rd〉b⊗̇ .

Define ‖·‖Gn
d

: Gn
d → [0,∞) by (Section 4 [HK14])

‖g‖Gn
d

:=
n∑

m=1
‖πm log⊗̇n(g)‖1/m,

where ‖l‖ :=
√
〈l, l〉. Put ‖·‖n := ‖πn·‖n.

Definition 4.1. (Equation (4.3) and Definition 4.1. [HK14]) Let γ ∈ (0, 1). A d-dimensional
γ-Hölder weakly geometric rough path is a map X : [0, T ]→ Gn

d with X0 := 1 such that

sup
s<t

‖Xst‖Gn
d

|t− s|γ
<∞,

where Xst := X⊗̇n−1
s ⊗̇n Xt = S�⊗̇Xs ⊗̇n Xt and n is the integer part of 1

γ . The set of all such
maps X : [0, T ]→ Gn

d is denoted by Rγ([0, T ],Rd).

Remark 4.2. The word ’weakly’ comes from the fact that there is a notion of geometric rough
paths which is a bit stronger. For details on this distinction, see [FV06].

We present three more definitions which will turn out to be equivalent.

47
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Definition 4.2.1. (Based on Equation (4.3) and Definition 4.1. [HK14]) Let γ ∈ (0, 1). A d-
dimensional γ-Hölder weakly geometric rough path is a map X̄ : [0, T ]→ Gd with X̄0 := 1 such
that

sup
s<t

‖πnX̄st‖Gn
d

|t− s|γ
<∞ ∀n ∈ N,

where X̄st := X̄⊗̇−1
s ⊗̇ X̄t = S�⊗̇X̄s ⊗̇ X̄t. The set of all such maps X̄ : [0, T ]→ Gd is denoted by

R̄γ([0, T ],Rd).

Definition 4.2.2. (Definition 1.2. [HK14]) Let γ ∈ (0, 1). A d-dimensional γ-Hölder weakly
geometric rough path is a map X̌ : [0, T ]2 → 〈Wn

d 〉
∗ such that

1. X̌st(1) = 1 and X̌st(w1 � w2) = X̌st(w1)X̌st(w2) for all words w1, w2 ∈ Wn
d such that

|w1|+ |w2| ≤ n,

2. X̌tt = εn and X̌st(w) = (X̌su ⊗ X̌ut)∆⊗̇w =
∑⊗̇

(w) X̌su(w1)X̌ut(w2) for all words w ∈ Wn
d ,

3. sups6=t
|X̌st(w)|
|t−s|γ|w| <∞ for all words w ∈ Wn

d ,

where n is the integer part of 1
γ . Put X̌t := X̌0t. The set of all such maps X̌ : [0, T ]2 → 〈Wn

d 〉
∗

is denoted by Řγ([0, T ],Rd).

Definition 4.2.3. (Based on Definition 1.2. [HK14]) Let γ ∈ (0, 1). A d-dimensional γ-Hölder
weakly geometric rough path is a map X̂ : [0, T ]2 → 〈Wd〉∗ such that

1. X̂st(1) = 1 and X̂st(w1 � w2) = X̂st(w1)X̂st(w2) for all words w1, w2 ∈ Wd,

2. X̂tt = ε and X̂st(w) = (X̂su ⊗ X̂ut)∆⊗̇w =
∑⊗̇

(w) X̂su(w1)X̂ut(w2) for all words w ∈ Wd,

3. sups6=t
|X̂st(w)|
|t−s|γ|w| <∞ for all words w ∈ Wd.

Put X̂t := X̂0t. The set of all such maps X̂ : [0, T ]2 → 〈Wd〉∗ is denoted by R̂γ([0, T ],Rd).

Theorem 4.3. Lyons’ Extension Theorem (Theorem 3.7 [LCL07]) Let γ ∈ (0, 1) and n be
the integer part of γ−1. Let X : [0, T ]2 → Tn(Rd) be such that π0Xst = 1 for all s, t ∈ [0, T ],
such that

Xsu ⊗̇n Xut = Xst ∀ s, u, t ∈ [0, T ]

and such that
sup
s<t

‖Xsu‖m
|u− s|mγ

<∞ ∀m ∈ {0, . . . ,n}. (4.1)

Then, there is a unique extension X̄ : [0, T ]2 → T((Rd)) such that πnX̄st = Xst for all s, t ∈ [0, T ],
such that

X̄su ⊗̇ X̄ut = X̄st ∀ s, u, t ∈ [0, T ] (4.2)

and such that
sup
s<t

‖X̄su‖m
|u− s|mγ

<∞ ∀m ∈ N0.

Theorem 4.4. (Corollary 3.9 [CDLL15]) In the context of Theorem 4.3, if Xst ∈ Gn
d for all

s, t ∈ [0, T ]2, then X̄st ∈ Gd for all s, t ∈ [0, T ]2.
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Note that for our setting of paths in Rd, this result is actually known for several years already,
but in [CDLL15], it is shown for the more general case of paths in a real Banach space.

Lemma 4.5. (Based on Proposition 4 [LV07])

1. For all k ∈ N, there is a constant Ck > 0 such that

|〈w, g〉| ≤ C|w|‖g‖
|w|
Gn
d
∀n ∈ N, g ∈ Gn

d , w ∈ Wn
d \ {1}.

2. For all n ∈ N, there is a constant C ′n > 0 such that

‖g‖Gn
d
≤ C ′n sup

w∈Wn
d
\{1}
|〈w, g〉|1/|w| ∀ g ∈ Gn

d .

Proof. (Based on the proof of Proposition 4 [LV07])

1. Let n ∈ N0 and x ∈ Lnd be arbitrary. For every m, k ∈ N with m ≤ n, we have

‖x⊗̇nm‖k =
∥∥∥∥( ∑

v∈Wn
d
\{1}

v〈v, x〉
)m∥∥∥∥

k

=
∥∥∥∥ ∑
v1,...,vm∈Wk

d \{1}:
|v1|+...+|vm|=k

〈v1, x〉 · · · 〈vm, x〉 v1 ⊗̇n · · · ⊗̇n vm
∥∥∥∥
k

≤
∑

v1,...,vm∈Wk
d \{1}:

|v1|+···+|vm|=k

m∏
i=1
|vi, x| ≤ Nm,k sup

v1,...,vm∈Wk
d \{1}:

|v1|+···+|vm|=k

m∏
i=1
|vi, x|

≤ Nm,k sup
l1,...,lm∈N:
l1+···+lm=k

m∏
i=1
‖x‖li

≤ Nm,k sup
l1,...,lm∈N:
l1+···+lm=k

m∏
i=1
‖exp⊗̇n(x)‖liGn

d
= Nm,k‖exp⊗̇n(x)‖kGn

d
,

where Nm,k :=
∣∣{v1, . . . , vm ∈ Wk

d \{1}
∣∣|v1|+· · ·+|vm| = k

}∣∣ <∞. Thus, for any w ∈ Wn
d ,

we get

∣∣〈w, exp⊗̇n(x)〉
∣∣ =

∣∣∣∣∣
n∑

m=0

1
m! 〈w, x

⊗̇nm〉

∣∣∣∣∣ =

∣∣∣∣∣∣
|w|∑
m=0

1
m! 〈w, π|w|x

⊗̇nm〉

∣∣∣∣∣∣
≤
|w|∑
m=0

1
m!

∥∥∥x⊗̇nm∥∥∥
|w|
≤
|w|∑
m=0

Nm,|w|

m!︸ ︷︷ ︸
:=C|w|

‖exp⊗̇n(x)‖|w|Gn
d
.

2. Let n ∈ N0 and 1 + u ∈ Gn
d be arbitrary. For every m, k ∈ N with m ≤ n, we have, with
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Nm,k and similar first steps as above,

‖um‖1/kk ≤ N
1/k
m,k sup

v1,...,vm∈Wk
d \{1}:

|v1|+···+|vm|=k

m∏
i=1
|vi, u|1/k

≤ N1/k
m,k sup

v1,...,vm∈Wk
d \{1}:

|v1|+···+|vm|=k

m∏
i=1

(
sup

v∈Wk
d
\{1}
|〈v, u〉|1/|v|

)|vi|/k = N
1/k
m,k sup

v∈Wk
d
\{1}
|〈v, u〉|1/|v|.

Thus,

‖1 + u‖Gn
d

=
n∑
k=1
‖log⊗̇n(1 + u)‖1/kk =

n∑
k=1

∥∥∥∥ k∑
m=1

(−1)m−1u⊗̇nm

m

∥∥∥∥1/k

k

≤
n∑
k=1

( k∑
m=1

1
m‖u

⊗̇nm‖k
)1/k (♦)

≤
n∑
k=1

k∑
m=1

1
k
√
m
‖u⊗̇nm‖1/kk

≤
n∑
k=1

k∑
m=1

k

√
Nm,k
m︸ ︷︷ ︸

:=C′n

sup
v∈Wk

d
\{1}
|〈v, u〉|1/|v| = C ′n sup

v∈Wk
d
\{1}
|〈v,1 + u〉|1/|v|,

where at (♦), we iteratively used the simple fact that (a+b)1/k ≤ a1/k+b1/k for all a, b > 0,
k ∈ N.

The following theorem shows that the four definitions are indeed equivalent.

Theorem 4.6. Let γ ∈ (0, 1) and n denote the integer part of 1
γ . The maps

Iγ1 : R̄γ([0, T ],Rd)→ Rγ([0, T ],Rd), X̄ 7→ X, Xt := πnX̄t,

Iγ2 : Rγ([0, T ],Rd)→ Řγ([0, T ],Rd), X 7→ X̌, X̌st(w) := 〈w,Xst〉,
Iγ3 : R̄γ([0, T ],Rd)→ R̂γ([0, T ],Rd), X̄ 7→ X̂, X̂st(w) := 〈w, X̄st〉

are well-defined and bijective.

Proof.

1. Iγ1 : R̄γ([0, T ],Rd) → Rγ([0, T ],Rd) is well-defined. For each X̄ ∈ R̄γ([0, T ],Rd), we have
that X := πnX̄ ∈ Rγ([0, T ],Rd) since πnGd = Gn

d (see Corollary 3.40) and

πn(X̄st) = πn(S�⊗̇X̄s ⊗̇ X̄t) = πnS�⊗̇X̄s ⊗̇n π
nX̄t = S�⊗̇πnX̄s ⊗̇n π

nX̄t = S�⊗̇Xs ⊗̇n Xt,

where the latter together with the analytic condition of Definition 4.2.1 implies the analytic
condition of Definition 4.1.

2. Iγ1 is bijective. Direct consequence of Theorems 4.3 and 4.4. This is due to the fact that
the analytic condition of Definition 4.1 implies (4.1) and that (4.2) implies the analytic
condition of Definition 4.2.1. Indeed, by Lemma 4.5, we have

‖Xst‖m =
√ ∑
w∈Wd,m

〈w,Xst〉2 ≤
√
|Wd,m|Cm‖Xst‖mGn

d
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and
‖X̄st‖mGn

d
≤ (C ′m)m sup

w∈Wn
d
\{1}
|〈w, X̄st〉| ≤ (C ′m)m‖X̄st‖m.

3. Iγ2 : Rγ([0, T ],Rd) → Řγ([0, T ],Rd) is well-defined. Let X ∈ Rγ([0, T ],Rd) be arbitrary.
Then, X̌st := 〈·,Xst〉 ∈ 〈Wn

d 〉
∗ for all s, t ∈ [0, T ]. We have X̌st(1) = 〈1,Xst〉 = 1 since

Xst ∈ Gn
d ⊆ G〈Wn

d
〉. For all w1, w2 ∈ Wn

d with |w1|+ |w2| ≤ n we get, using the duality of
� and ∆

�
,

X̌st(w1 � w2) = 〈w1 � w2,Xst〉 = 〈w1 ⊗ w2,∆�
Xst〉

(♦)= 〈w1 ⊗ w2, π
n(Xst ⊗Xst)〉

= 〈w1 ⊗ w2,Xst ⊗Xst〉 = 〈w1,Xst〉〈w2,Xst〉 = X̌st(w1)X̌st(w2),

where at (♦) we used the fact that 〈w1 ⊗ w2, w3 ⊗ w4〉 = 0 for all w3, w4 ∈ Wd such that
|w3|+ |w4| > n. Furthermore, using the duality of ⊗̇ and ∆⊗̇, we have for all w ∈ Wn

d that

X̌st(w) = 〈w,Xst〉 = 〈w,Xsu ⊗̇n Xut〉
(♦)= 〈w, πn(Xsu ⊗̇Xut)〉 = 〈w,Xsu ⊗̇Xut〉

= 〈∆⊗̇w,Xsu ⊗Xut〉 = (X̌su ⊗ X̌ut)∆⊗̇w,

where at (♦) we used the fact that 〈w, v〉 = 0 for all v ∈ Wd such that |v| > n. Finally,
the fact that the analytic condition of Definition 4.2.2 follows from that of Definition 4.1
is a direct consequence of Lemma 4.5. Thus, X̌ ∈ Řγ([0, T ],Rd).

4. Iγ2 is bijective. First of all, if X̄1, X̄2 ∈ R̄γ([0, T ],Rd) with X̄1 6= X̄2, then there is t ∈ [0, T ]
such that X̄1

t 6= X̄2
t and thus, there is w ∈ Wd such that 〈w, X̄1

0t〉 6= 〈w, X̄2
0t〉. Thus, Iγ2 is

injective.
Let now X̌ ∈ Rγ([0, T ],Rd) be arbitrary. Put Xst :=

∑
w∈Wn

d
X̌(w)w. Then, we obviously

have X̌st = 〈 · ,Xst〉 for all s, t ∈ [0, T ]. For all w1, w2 ∈ Wn
d such that |w1|+ |w2| ≤ n, we

get, again by the duality of � and ∆
�
,

〈w1 ⊗ w2,∆�
Xst〉 = 〈w1 � w2,Xst〉 = X̌st(w1 � w2) = X̌st(w1)X̌st(w2)

= 〈w1,Xst〉〈w2,Xst〉 = 〈w1 ⊗ w2,Xst ⊗Xst〉
= 〈w1 ⊗ w2, π

n(Xst ⊗Xst)〉.

Since 〈 · , · 〉 on 〈Wd〉 ⊗ 〈Wd〉 restricted to [〈Wd〉 ⊗ 〈Wd〉]n is again an inner product, we
conclude ∆

�
Xst = πn(Xst ⊗ Xst and together with 〈1,Xst〉 = X̌st(1) = 1 therefore

Xst ∈ Gn
d for all s, t ∈ [0, T ]. Furthermore, for all w ∈ Wn

d and all s, u, t ∈ [0, T ], we have

〈w,Xst〉 = X̌st(w) = (X̌su ⊗ X̌ut)∆⊗̇w = 〈∆⊗̇w,Xsu ⊗Xut〉 = 〈w,Xsu ⊗̇Xut〉
= 〈w, πn(Xsu ⊗̇Xut)〉 = 〈w,Xsu ⊗̇n Xut〉.

Since 〈 · , · 〉 on 〈Wd〉 restricted to 〈Wn
d 〉 is again an inner product, we conclude Xst =

Xsu ⊗̇n Xut. Thus, putting Xt := X0t for all t ∈ [0, T ] and using X̌00 = εn, we get

1 = X00 = X0t ⊗̇n Xt0 = Xt ⊗̇n Xt0

and therefore Xst = Xs0 ⊗̇n X0t = X⊗̇n−1
s ⊗̇n Xt. Hence, using Lemma 4.5 and the analytic

condition of Definition 4.2.2, we get the analytic condition of Definition 4.1 and conclude
that indeed X ∈ Rγ([0, T ],Rd). This means we have shown that Iγ2 is also surjective.
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5. Iγl : R̄γ([0, T ],Rd) → R̂γ([0, T ],Rd) is well-defined. Let X ∈ R̄γ([0, T ],Rd) be arbitrary.
Then, X̂st := 〈·, X̄st〉 ∈ 〈Wd〉∗ for all s, t ∈ [0, T ]. We have X̂st(1) = 〈1, X̄st〉 = 1 since
X̄st ∈ Gd ⊆ G〈Wd〉. For all m ∈ N and w1, w2 ∈ Wm

d with |w1| + |w2| ≤ m we get, using
the duality of � and ∆

�
,

X̂st(w1 � w2) = 〈w1 � w2, X̄st〉 = 〈w1 � w2, π
mX̄st〉 = 〈w1 ⊗ w2,∆�

πmX̄st〉
= 〈w1 ⊗ w2, π

m∆
�
X̄st〉 = 〈w1 ⊗ w2, π

m(X̄st ⊗ X̄st)〉
= 〈w1 ⊗ w2, X̄st ⊗ X̄st〉 = 〈w1, X̄st〉〈w2, X̄st〉 = X̂st(w1)X̂st(w2).

Furthermore, using the duality of ⊗̇ and ∆⊗̇, we have for all m ∈ N and w ∈ Wm
d that

X̂st(w) = 〈w, X̄st〉 = 〈w, X̄su ⊗̇ X̄ut〉 = 〈w, πm(X̄su ⊗̇ X̄ut)〉 = 〈w, πmX̄su ⊗̇m πmX̄ut〉
= 〈w, πm(πmX̄su ⊗̇ πmX̄ut)〉 = 〈w, πmX̄su ⊗̇ πmX̄ut〉
= 〈∆⊗̇w, πmX̄su ⊗ πmX̄ut〉 = 〈∆⊗̇w, X̄su ⊗ X̄ut〉 = (X̂su ⊗ X̂ut)∆⊗̇w.

Finally, the fact that the analytic condition of Definition 4.2.3 follows from that of Definition
4.2.1 is a direct consequence of Lemma 4.5. Thus, X̌ ∈ R̂γ([0, T ],Rd).

6. Iγ2 is bijective. First of all, if X1,X2 ∈ Rγ([0, T ],Rd) with X1 6= X2, then there is t ∈ [0, T ]
such that X1

t 6= X2
t and thus, there is w ∈ Wn

d such that 〈w,X1
0t〉 6= 〈w,X2

0t〉. Thus, I
γ
2 is

injective.
Let now X̂ ∈ R̂γ([0, T ],Rd) be arbitrary. Put X̄st :=

∑
w∈Wd

X̂(w)w. Then, we obviously
have X̂st = 〈 · , X̄st〉 for all s, t ∈ [0, T ]. For all m ∈ N and w1, w2 ∈ Wm

d such that
|w1|+ |w2| ≤ m, we get, again by the duality of � and ∆

�
,

〈w1 ⊗ w2,∆�
X̄st〉 = 〈w1 ⊗ w2, π

m∆
�
X̄st〉 = 〈w1 ⊗ w2,∆�

πmX̄st〉 = 〈w1 � w2, π
mX̄st〉

= 〈w1 � w2, X̄st〉 = X̂st(w1 � w2) = X̂st(w1)X̂st(w2)
= 〈w1, X̄st〉〈w2, X̄st〉 = 〈w1 ⊗ w2, X̄st ⊗ X̄st〉

Since (〈Wd〉⊗〈Wd〉, 〈Wd〉⊗〈Wd〉Π) is a pair of dual vector spaces under 〈 · , · 〉, we conclude
∆
�
X̄st = X̄st ⊗ X̄st and together with 〈1, X̄st〉 = X̂st(1) = 1 therefore X̄st ∈ Gd for all

s, t ∈ [0, T ]. Furthermore, for all m ∈ N, w ∈ Wm
d and all s, u, t ∈ [0, T ], we have

〈w, X̄st〉 = X̂st(w) = (X̂su ⊗ X̂ut)∆⊗̇w = 〈∆⊗̇w, X̄su ⊗ X̄ut〉 = 〈∆⊗̇w, πmX̄su ⊗ πmX̄ut〉
= 〈w, πmX̄su ⊗̇ πmX̄ut〉 = 〈w, πm(πmX̄su ⊗̇ πmX̄ut)〉 = 〈w, πmX̄su ⊗̇m πmX̄ut〉
= 〈w, πm(X̄su ⊗̇ X̄ut)〉 = 〈w, X̄su ⊗̇n X̄ut〉.

Since (〈Wd〉, 〈Wd〉Π) is a pair of dual vector spaces under 〈 · , · 〉, we conclude X̄st = X̄su ⊗̇
X̄ut. Thus, putting X̄t := X0t for all t ∈ [0, T ] and using X̂00 = ε, we get

1 = X̄00 = X̄0t ⊗̇ X̄t0 = X̄t ⊗̇ X̄t0

and therefore X̄st = X̄s0 ⊗̇ X̄0t = X̄⊗̇−1
s ⊗̇ X̄t. Hence, using Lemma 4.5 and the analytic

condition of Definition 4.2.3, we get the analytic condition of Definition 4.2.1 and conclude
that indeed X̄ ∈ R̄γ([0, T ],Rd). This means we have shown that Iγ2 is also surjective.
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Theorem 4.7. (Section 4.4 [Hai14])
Consider maps Π : [0, T ] → L

(
〈Wd〉,C([0, T ],Rd)

)
and Γ : [0, T ]2 → L(〈Wd〉, 〈Wd〉). They

satisfy the conditions

1. (Πs1)(t) = 1 and Γst(x1 � x2) = Γstx1 � Γstx2 for all s, t ∈ [0, T ], x1, x2 ∈ 〈Wd〉,

2. Πs = ΠuΓus and ΓsuΓut = Γst and ∆⊗̇Γst = (Γst ⊗ id)∆⊗̇ for all s, u, t ∈ [0, T ],

3. |(Πsw)(t)| . |t − s|γ|w| and ‖Γstw‖m . |t − s|γ(|w|−m) for all words w and m < |w|,
uniformly over all s, t ∈ [0, T ]

if and only if they are given by

(Πsx)(t) := X̂st(x), Γstx := (X̂ts ⊗ id)∆⊗̇x =
⊗̇∑

(x)

X̂ts(x1)x2

for some geometric rough path X̂ ∈ R̂γ([0, T ],Rd). In this case, we furthermore have Γstw−w ∈
〈Wn−1

d 〉 for all words w with |w| = n and Πt(x1 � x2) = Πtx1Πtx2 for all t ∈ [0, T ] and
x1, x2 ∈ 〈Wd〉.

Proof.

a) =⇒ : Let X̂st := εΓts, where ε is the counit of (〈Wd〉,∆⊗̇). We have

(Πt · )(t) = ε(·)

for all t ∈ [0, T ] since (Πt1)(t) = 1 and (Πtw)(t) = 0 for all words w such that |w| > 0.
The latter is due to 3. and the continuity of Πtw. Hence, using 2. we get

X̂st(x) = εΓtsx = (ΠtΓtsx)(t) = (Πsx)(t).

Due to the counit property (2.5) and 2. it holds that

Γst = (ε⊗ id)∆⊗̇Γst = (ε⊗ id)(Γst ⊗ id)∆⊗̇ = (εΓst ⊗ id)∆⊗̇ = (X̂ts ⊗ id)∆⊗̇.

1. and the fact that the counit is an algebra homomorphism imply

X̂st(w1�w2) = εΓts(w1�w2) = ε(Γtsw1�Γtsw2) = εΓtsw1�εΓtsw2 = X̂st(w1)�X̂st(w2),

while from 2. we conclude

X̂st = εΓts = εΓtuΓus = X̂tuΓus = X̂ut(X̂su ⊗ id)∆⊗̇ = (X̂su ⊗ X̂ut)∆⊗̇.

Finally, using the fact that ‖·‖0 = |ε(·)|, 3. leads to

|X̂st(w)| = |εΓtsw| = ‖Γtsw‖0 . |t− s|γ|w|.

Hence, X̂ ∈ R̂γ([0, T ],Rd) is a geometric rough path according to Definition 4.2.3.

b) ⇐= : First of all, continuity of Πsx for all s ∈ [0, T ] and all x ∈ Wd follows from the fact
that for all u ∈ [0, T ], we have

lim
t→u

(Πsx)(t) = lim
t→u

X̂st(x) =
⊗̇∑

(x)

X̂su(x1) lim
t→u

X̂ut(x2) =
⊗̇∑

(x)

X̂su(x1)ε(x2)

= X̂su(x) = (Πsx)(u),
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where we used Definition 4.2.3 2. and 3. as well as the counit property (2.5). Due to
Definition 4.2.3 1. we have

(Πt1)(t) = X̂tt(1) = 1.
Again using Definition 4.2.3 1. and the fact that ∆⊗̇ is an algebra homomorphism, we
compute

Γst(x� y) = (X̂ts ⊗ id)∆⊗̇(x� y) =
⊗̇∑

(x)

⊗̇∑
(y)

X̂ts(x1 � y1) (x2 � y2)

=
⊗̇∑

(x)

⊗̇∑
(y)

X̂ts(x1) X̂ts(y1) (x2 � y2) =
( ⊗̇∑

(x)

X̂ts(x1)x2

)
�

( ⊗̇∑
(y)

X̂ts(y1)y2

)
= Γstx� Γsty

Likewise,

(Πs(x1�x2))(t) = X̂st(x1�x2) = X̂st(x1)X̂st(x2) = (Πsx1)(t)(Πsx2)(t) = (Πsx1Πsx2)(t).

By Definition 4.2.3 2. we conclude

(ΠuΓusx)(t) = X̂ut(Γusx) = X̂ut(X̂su ⊗ id)∆⊗̇x = (X̂su ⊗ X̂ut)∆⊗̇x = X̂st(x) = (Πsx)(t),

as well as, using coassociativity,

ΓsuΓut = (X̂us ⊗ id)∆⊗̇(X̂tu ⊗ id)∆⊗̇ = (X̂us ⊗ id)(X̂tu ⊗∆⊗̇)∆⊗̇
= (X̂tu ⊗ X̂us ⊗ id)(id⊗∆⊗̇)∆⊗̇ = (X̂tu ⊗ X̂us ⊗ id)(∆⊗̇ ⊗ id)∆⊗̇
= (X̂ts ⊗ id)∆⊗̇ = Γst

and similarly

∆⊗̇Γst = ∆⊗̇(X̂ts ⊗ id)∆⊗̇ = (X̂ts ⊗ id⊗ id)(id⊗∆⊗̇)∆⊗̇ = (X̂ts ⊗ id⊗ id)(∆⊗̇ ⊗ id)∆⊗̇
= (Γst ⊗ id)∆⊗̇.

Since for every word w, there are words wi1, wi2, |wi1| = |wi2| = i such that ∆⊗̇w =∑|w|
i=0 w

|w|−i
1 ⊗ wi2, we have

‖Γstw‖m ≤
|w|∑
i=0

∣∣X̂ts

(
w
|w|−i
1

)∣∣‖wi2‖m =
∣∣X̂ts

(
w
|w|−m
1

)∣∣ . |t− s|γ(|w|−m) (4.3)

due to Definition 4.2.3 3., which also directly implies

|(Πs(w))(t)| = |X̂st(w)| . |t− s|γ|w|

for all words w. Finally,

Γstw =
⊗̇∑

(w)

X̂ts(w1)w2 = X̂ts(1)w + X̂ts(w)1 +
⊗̇∑

(w)

X̂ts(w′)w′′

= w + X̂ts(w)1 +
⊗̇∑

(w)

X̂ts(w′)w′′,

thus Γstw − w ∈ 〈Wn−1
d 〉 for all words w with |w| = n.
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4.2 Branched rough paths
Put Fd := F{1,...,d} and

Gd := GrLk(〈Fd〉Π,∆�) = {g ∈ 〈Fd〉Π|∆�g = g ⊗ g} = exp?(〈Td〉Π),

where
〈Td〉Π = Prim(〈Fd〉Π,∆�) = {l ∈ 〈Fd〉Π|∆�l = 1⊗ l + l ⊗ 1},

as well as

G n
d := GrLkn(〈Fn

d 〉,∆�) = {g ∈ 〈Fn
d 〉|∆�g = πn(g ⊗ g)} = πnGd = exp?n(〈T n

d 〉),

where
〈T n

d 〉 = Prim(〈Fn
d 〉,∆�) = {l ∈ 〈Fn

d 〉|∆�l = 1⊗ l + l ⊗ 1}.

Define ‖·‖Gn
d

: G n
d → [0,∞) by (Remark 2.15. [HK14])∥∥∥∥ exp?n

( ∑
τ∈T n

d

bττ
)∥∥∥∥

Gn
d

:=
∑
τ∈T n

I

|bτ |1/|τ |.

Furthermore, put ‖x‖ :=
√
〈x, x〉 for all x ∈ 〈Fd〉 and ‖x‖n := ‖πnx‖ for all x ∈ 〈Fd〉Π.

Definition 4.8. (Definition 2.13., Remark 2.15. [HK14]) Let γ ∈ (0, 1). A d-dimensional γ-
Hölder branched rough path is a map X : [0, T ]→ G n

d with X0 := 1 such that

sup
s<t

‖Xst‖G n
d

|t− s|γ
<∞,

where Xst := X?n−1
s ?n Xt = S�? Xs ?n Xt and n is the integer part of 1

γ . The set of all such
maps X : [0, T ]→ G n

d is denoted by Rγ([0, T ],Rd).

Again, we present three more equivalent definitions.

Definition 4.8.1. (Based on Definition 2.13., Remark 2.15. [HK14]) Let γ ∈ (0, 1). A d-
dimensional γ-Hölder branched rough path is a map X̄ : [0, T ]→ Gd with X̄0 := 1 such that

sup
s<t

‖πnX̄st‖Gn
d

|t− s|γ
<∞ ∀n ∈ N,

where X̄st := X̄?−1
s ? X̄t = S�? X̄s ? X̄t. The set of all such maps X̄ : [0, T ] → Gd is denoted by

R̄γ([0, T ],Rd).

Definition 4.8.2. (Definition 1.6. [HK14]) Let γ ∈ (0, 1). A d-dimensional γ-Hölder branched
rough path is a map X̌ : [0, T ]2 → 〈F n

d 〉
∗ such that

1. X̌st(1) = 1 and X̌st(ζ1ζ2) = X̌st(ζ1)X̌st(ζ2) for all forests ζ1, ζ2 ∈ F n
d such that |ζ1|+|ζ2| ≤

n,

2. X̌tt = εn and X̌st(ζ) = (X̌su ⊗ X̌ut)∆?ζ =
∑?

(ζ) X̌su(ζ1)X̌ut(ζ2) for all forests ζ ∈ F n
d ,

3. sups6=t
|X̌st(ζ)|
|t−s|γ|ζ| <∞ for all forests ζ ∈ F n

d ,
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where n is the integer part of 1
γ . Put X̌t := X̌0t. The set of all such maps X̌ : [0, T ]2 → 〈F n

d 〉
∗

is denoted by Řγ([0, T ],Rd).

Definition 4.8.3. (Based on Definition 1.6. [HK14]) Let γ ∈ (0, 1). A d-dimensional γ-Hölder
branched rough path is a map X̂ : [0, T ]2 → 〈Fd〉∗ such that

1. X̂st(1) = 1 and X̂st(ζ1ζ2) = X̂st(ζ1)X̂st(ζ2) for all forests ζ1, ζ2 ∈ Fd,

2. X̂tt = ε and X̂st(ζ) = (X̂su ⊗ X̂ut)∆?ζ =
∑?

(ζ) X̂su(ζ1)X̂ut(ζ2) for all forests ζ ∈ Fd,

3. sups6=t
|X̂st(ζ)|
|t−s|γ|ζ| <∞ for all forests ζ ∈ Fd.

Put X̂t := X̂0t. The set of all such maps X̂ : [0, T ]2 → 〈Fd〉∗ is denoted by R̂γ([0, T ],Rd).

Lemma 4.9. (Based on Remark 2.15. [HK14])

1. For all k ∈ N, there is a constant Ck > 0 such that

|〈ζ, g〉| ≤ C|w|‖g‖
|ζ|
Gn
d
∀n ∈ N, g ∈ G n

d , ζ ∈ Fn
d \ {1}.

2. For all n ∈ N, there is a constant C ′n > 0 such that

‖g‖Gn
d
≤ C ′n sup

ζ∈Fn
d
\{1}
|〈ζ, g〉|1/|ζ| ∀ g ∈ G n

d .

Proof. (Based on the proof of Proposition 4 [LV07])

1. Let n ∈ N0 and x =
∑
τ∈T n

d
bττ ∈ 〈T n

d 〉 be arbitrary. For every m, k ∈ N with m ≤ n, we
have

‖x?nm‖k =
∥∥∥∥( ∑

τ∈T n
d
\{1}

bττ
)m∥∥∥∥

k

=
∥∥∥∥ ∑
τ1,...,τm∈T k

d \{1}:
|τ1|+...+|τm|=k

bτ1 · · · bτm τ1 ?n · · · ?n τm
∥∥∥∥
k

≤ sup
τ1,...,τm∈T k

d \{1}:
|τ1|+···+|τm|=k

‖τ1 ?n · · · ?n τm‖k

︸ ︷︷ ︸
:=Dm,k

∑
τ1,...,τm∈T k

d \{1}:
|τ1|+···+|τm|=k

m∏
i=1
|bτi |

≤ Dm,kNm,k sup
τ1,...,τm∈T k

d \{1}:
|τ1|+···+|τm|=k

m∏
i=1
|bτi |

≤ Dm,kNm,k sup
l1,...,lm∈N:
l1+···+lm=k

m∏
i=1
‖exp?n(x)‖liGn

d
= Dm,kNm,k‖exp?n(x)‖kGn

d
,
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where Nm,k :=
∣∣{τ1, . . . , τm ∈ T k

d \{1}
∣∣|τ1|+ · · ·+ |τm| = k

}∣∣ <∞. Thus, for any ζ ∈ Fn
d ,

we get

∣∣〈ζ, exp?n(x)〉
∣∣ =

∣∣∣∣∣
n∑

m=0

1
m! 〈ζ, x

?nm〉

∣∣∣∣∣ =

∣∣∣∣∣∣
|ζ|∑
m=0

1
m! 〈ζ, π|ζ|x

?nm〉

∣∣∣∣∣∣
≤
|ζ|∑
m=0

1
m! ‖x

?nm‖|ζ| ≤
|ζ|∑
m=0

Dm,|ζ|Nm,|ζ|

m!︸ ︷︷ ︸
:=C|ζ|

‖exp?n(x)‖|ζ|Gn
d
.

2. Let n ∈ N0 and u ∈ g〈Wn
d
〉 be arbitrary. For every m, k ∈ N with m ≤ n, we have, with

D̃m,k := sup
ζ1,...,ζm∈Fk

d \{1}:
|ζ1|+···+|ζm|=k

‖ζ1 ?n · · · ?n ζm‖k,

Ñm,k :=
∣∣{ζ1, . . . , ζm ∈ F k

d \ {1}
∣∣|ζ1| + · · · + |ζm| = k

}∣∣ < ∞ and similar first steps as
above,

‖u?nm‖1/kk ≤ D̃
1/k
m,kÑ

1/k
m,k︸ ︷︷ ︸

:=Rm,k

sup
ζ1,...,ζm∈Fk

d \{1}:
|ζ1|+···+|ζm|=k

m∏
i=1
|ζi, u|1/k

≤ R1/k
m,k sup

ζ1,...,ζm∈Fk
d \{1}:

|ζ1|+···+|ζm|=k

m∏
i=1

(
sup

ζ∈Fk
d
\{1}
|〈ζ, u〉|1/|ζ|

)|ζi|/k = R
1/k
m,k sup

ζ∈Fk
d
\{1}
|〈ζ, u〉|1/|ζ|.

Thus,

‖1 + u‖Gn
d

=
n∑
k=1
‖log?n(1 + u)‖1/kk =

n∑
k=1

∥∥∥∥ k∑
m=1

(−1)m−1u?nm

m

∥∥∥∥1/k

k

≤
n∑
k=1

( k∑
m=1

1
m‖u

?nm‖k
)1/k (♦)

≤
n∑
k=1

k∑
m=1

1
k
√
m
‖u?nm‖1/kk

≤
n∑
k=1

k∑
m=1

k

√
Rm,k
m︸ ︷︷ ︸

:=C′n

sup
ζ∈Fk

d
\{1}
|〈ζ, u〉|1/|ζ| = C ′n sup

ζ∈Fk
d
\{1}
|〈ζ,1 + u〉|1/|ζ|,

where at (♦), we iteratively used the simple fact that (a+b)1/k ≤ a1/k+b1/k for all a, b > 0,
k ∈ N.

For each γ ∈ (0, 1), let qγ : 〈Fd〉 → R be the linear map recursively generated by qγ(ζ) := 1
for all ζ ∈ Fd such that |ζ| ≤ 1/γ and

qγ(ζ) := 1
2γ|ζ| − 2

?∑
(ζ)

qγ(ζ ′)qγ(ζ ′′), qγ(ζ1ζ2) := qγ(ζ1)qγ(ζ2)

for all ζ, ζ1, ζ2 ∈ Fd such that |ζ| > 1/γ and |ζ1ζ2| > 1/γ (Equation (34) [Gub10]).



58 CHAPTER 4. ROUGH PATHS

Theorem 4.10. Gubinelli’s Extension Theorem (Theorem 7.3. [Gub10]) For γ ∈ (0, 1), let
X̌ ∈ Řγ([0, T ],Rd) and B ∈ [0, 1], A > 0 such that

sup
s<t

|X̌st(τ)|
|t− s|γ|τ |

≤ BA|τ |qγ(τ) ∀ τ ∈ T n
d .

Then, there is an extension X̂ ∈ R̂γ([0, T ],Rd) such that X̂st�〈Fn
d
〉 = X̌st for all s, t ∈ [0, T ],

where n is the integer part of γ, and

sup
s<t

|X̂st(τ)|
|t− s|γ|τ |

≤ BA|τ |qγ(τ) ∀ τ ∈ Td.

Lemma 4.11. If for an X ∈ Rγ([0, T ],Rd) there exists an extension X̄ ∈ R̄γ([0, T ],Rd) such
that πnX̄ = X, then this extension is unique.
Proof. Assume for X̄1, X̄2 ∈ R̄γ([0, T ],Rd), we have πmX̄1 = X = πmX̄2 for some m ≥ n.
Put At := log?m+1(πm+1X̄1

t ), at := At − πmAt, Bt := log?m+1(πm+1X̄2
t ) and bt := Bt − πmBt.

Then, since πmAt ?m+1 at = 0 due to ast ∈ 〈Td,m+1〉 and εAt = 0, we have A
?m+1k
t =

(πmAt)?m+1k for k > 1 and thus

πm+1X̄a
t = exp?m+1(At) = exp?m+1(πmAt) + at.

Since both πmAs and as are primitive elements, we have S�? exp?m+1(πmAs) = exp?m+1(−πmAs)
and S�? as = −as, and thus

πm+1X̄1
st = πm+1(X̄t ? S�? X̄s) = πm+1X̄t ?m+1 S�? πm+1X̄s

= (exp?m+1(πmAt) + at) ?m+1 S(exp?m+1(πmAs) + as)
= (exp?m+1(πmAt) + at) ?m+1 (exp?m+1(−πmAs)− as)
= exp?m+1(πmAt) ?m+1 exp?m+1(−πmAs) + at − as

Likewise, πm+1X̄2
st = exp?m+1(πmBt) ?m+1 exp?m+1(πm −Bs) + bt − bs. Since

πmAt = πm log?m+1(πm+1X̄1
t ) = log?m(πmX̄1

t ) = log?m(πmX̄2
t ) = πm log?m+1(πm+1X̄2

t )
= πmBt,

we have
πm+1X̄1

st − πm+1X̄2
st = at + bs − as − bt.

Using Lemma 4.9, we get from the analytic condition in Definition 4.8.1 that

sup
s<t

|〈ζ, (at − bt)− (as − bs)〉|
|t− s|(m+1)γ <∞ ∀ ζ ∈ Fd,m+1,

thus a− b is constant since (m+ 1)γ ≥ (n + 1)γ > 1, and hence πm+1X̄1
st = πm+1X̄2

st.
By inductive application of the argumentation above, we get X̄1 = X̄2.

Theorem 4.12. Let γ ∈ (0, 1) and n denote the integer part of 1
γ . The maps

Iγ1 : R̄γ([0, T ],Rd)→ Rγ([0, T ],Rd), X̄ 7→ X, Xt := πnX̄t,

Iγ2 : Rγ([0, T ],Rd)→ Řγ([0, T ],Rd), X 7→ X̌, X̌st(y) := 〈y,Xst〉,

Iγ3 : R̄γ([0, T ],Rd)→ R̂γ([0, T ],Rd), X̄ 7→ X̂, X̂st(y) := 〈y, X̄st〉

are well-defined and bijective.
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Proof. The proof that the functions Iγ2 and Iγ3 are well-defined and bijective is completely anal-
ogous to steps 3. to 6. of the proof of Theorem 4.6. It remains to look at Iγ1 .

1. Iγ1 : R̄γ([0, T ],Rd)→ Rγ([0, T ],Rd) is well-defined. For each X̄ ∈ R̄γ([0, T ],Rd), we have
that X := πnX̄ ∈ Rγ([0, T ],Rd) since πnGd = G n

d (see Corollary 3.40) and

πn(X̄st) = πn(S�? X̄s ? X̄t) = πnS�? X̄s ?n π
nX̄t = S�? πnX̄s ?n π

nX̄t = S�? Xs ?n Xt,

where the latter together with the analytic condition of Definition 4.8.1 implies the analytic
condition of Definition 4.8.

2. Iγ1 is bijective. Injectivity was already proven in Lemma 4.11. To show surjectivity, let
X ∈ Rγ([0, T ],Rd) be arbitrary. Then, X̌ := Iγ2 (X) ∈ Řγ([0, T ],Rd) is given by X̌st(y) =
〈y,Xst〉 for all y ∈ 〈F n

d 〉, s, t ∈ [0, T ]. Since T n
d is a finite set, for any B ∈ (0, 1] there is

some A > 0 such that

sup
s<t

|X̌st(τ)|
|t− s|γ|τ |

≤ BA|τ |qγ(τ) ∀ τ ∈ T n
d .

Thus, applying Theorem 4.10, we find that there is an extension X̂ ∈ R̂γ([0, T ],Rd) such
that X̂st�〈Fn

d
〉 = X̌st. By surjectivity of Iγ3 , there finally is X̄ ∈ R̄γ([0, T ],Rd) such that

X̂st(y) = 〈y, X̄st〉 for all y ∈ 〈Fd〉, s, t ∈ [0, T ]. Then, again for all s, t ∈ [0, T ],

Iγ3 (X̄st) = πnX̄st = πn
∑
ζ∈Fd

〈ζ, X̄st〉ζ = πn
∑
ζ∈Fd

X̂st(ζ)ζ =
∑
ζ∈Fn

d

X̂st(ζ)ζ =
∑
ζ∈Fn

d

X̌st(ζ)ζ

=
∑
ζ∈Fn

d

〈ζ,Xst〉ζ = Xst.

Since X ∈ Rγ([0, T ],Rd) was arbitrary, we have proven that Iγ1 is surjective.

Putting ‖ζ‖ :=
√
〈ζ, ζ〉 and ‖ζ‖m := ‖πmζ‖, we have the following.

Theorem 4.13. (Based on Section 4.4 [Hai14])
Consider maps Π : [0, T ]→ L

(
〈Fd〉,C([0, T ],Rd)

)
and Γ : [0, T ]2 → L(〈Fd〉, 〈Fd〉). They satisfy

the conditions

1. (Πs(1))(t) = 1 and Γst(x1 � x2) = Γstx1 � Γstx2 for all s, t ∈ [0, T ], x1, x2 ∈ 〈Fd〉,

2. Πs = ΠuΓus and ΓsuΓut = Γst and ∆?Γst = (Γst ⊗ id)∆? for all s, u, t ∈ [0, T ],

3. |(Πs(ζ))(t)| . |t − s|γ|ζ| and ‖Γstζ‖m . |t − s|γ(|ζ|−m) for all forests ζ and m < |ζ|,
uniformly over all s, t ∈ [0, T ]

if and only if they are given by

(Πs(x))(t) := X̂st(x), Γstx := (X̂ts ⊗ id)∆?x =
?∑

(x)

X̂ts(x1)x2

for some branched rough path X̂ ∈ R̂γ([0, T ],Rd). In this case, we furthermore have Γstζ − ζ ∈
〈Fn−1

d 〉 for all forests ζ with |ζ| = n and Πt(x1 � x2) = Πtx1Πtx2 for all t ∈ [0, T ] and
x1, x2 ∈ 〈Fd〉.



60 CHAPTER 4. ROUGH PATHS

Proof. Analogous to the proof of Theorem 4.7. Just replace (〈Wd〉,�,∆⊗̇) with (〈Fd〉,�,∆?)
everywhere, except that instead of (4.3) we have now

‖Γstζ‖m ≤
∑

(C,T )∈Cuts(ζ)

cζ(C, T ) |X̂ts(C)|‖T‖m =
∑

(C,T )∈Cuts(ζ):
|C|=|ζ|−m

cζ(C, T ) |X̂ts(C)|

. |t− s|γ(|ζ|−m).

It turns out that weakly geometric rough paths can be seen as a special kind of branched
rough paths satisfying an additional condition, which is nothing but the integration by parts
rule. This is made precise by the following result, which is due to [HK14]. We added a proof for
the ’conversely’ part which was just stated as an observation there.

Let φ : 〈Fd〉 → 〈Wd〉 be the Hopf algebra homomorphism and φ̂ : 〈Wd〉 → 〈Td〉 be the
coalgebra monomorphism introduced in Theorem 3.55.

Theorem 4.14. (Section 4.1, Proposition 4.6. [HK14]) For every weakly geometric rough path
X̌g ∈ Rγ

2 ([0, T ],Rd), there is a branched rough path X̌b ∈ Rγ
2 ([0, T ],Rd) given by

X̌b
st(x) := X̌g

st(φ(x)).

X̌g can be recovered from X̌b by
X̌g
st(x) = X̌b

st(φ̂(x)).
Conversely, for every branched rough path X̌b′ ∈ Rγ

2 ([0, T ],Rd) with the additional property that

X̌b′
st(x) = 0 ∀x ∈ 〈F n

d 〉 ∩ kerφ, s, t ∈ [0, T ], (4.4)

there is a weakly geometric rough path X̌g′ ∈ Rγ
2 ([0, T ],Rd) given by

X̌g′
st(x) := X̌b′

st(φ̂(x)).

X̌b′ can be recovered from X̌g′ by

X̌b′
st(x) = X̌g′

st(φ(x)).

Proof. Again, put n := b 1
γ c.

1. Let X̌g ∈ Rγ
2 ([0, T ],Rd) and X̌b defined as above. The algebraic conditions 1. and 2. of

Definition 4.8.2 follow then directly from the algebraic conditions 1. and 2. of Definition
4.2.2 due to the fact that φ is a bialgebra homomorphism which preserves the grading. We
also have

sup
s<t

|X̌b
st(ζ)|

|t− s|γ|ζ|
= sup

s<t

|X̌g
st(φ(ζ))|
|t− s|γ|ζ|

<∞ ∀ ζ ∈ 〈F n
d 〉

due to condition 3. of Definition 4.2.2 since φ(ζ) ∈ 〈Wd,|ζ|〉, and thus we indeed have
X̌b ∈ Rγ

2 ([0, T ],Rd). The recovery property is clear from the fact that φφ̂ = id.

2. Let X̌b′ ∈ Rγ
2 ([0, T ],Rd) be such that it satisfies the additional property and let X̌g′ be

defined as above. We have that φ̂(w1) � φ̂(w2) − φ̂(w1 � w2) ∈ kerφ for all w1, w2 ∈ Wd,
since

φ(φ̂(w1)� φ̂(w2)− φ̂(w1 � w2)) = φ(φ̂(w1)� φ̂(w2))− φφ̂(w1 � w2)
= φφ̂(w1)� φφ̂(w2)− w1 � w2 = 0.
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Hence, using property 1. of Definition 4.8.2, we get for all w1, w2 ∈ Wd with |w1|+ |w2| ≤ n
that

X̌g′(w1 � w2) = X̌b′(φ̂(w1 � w2)) = X̌b′(φ̂(w1)� φ̂(w2)) = X̌b′(φ̂(w1))X̌b′(φ̂(w2))

= X̌g′(w1)X̌g′(w2).

Since φ̂ is a coalgebra homomorphism, condition 2. of Definition 4.2.2 for X̌g′ follows
directly from condition 2. of Definition 4.8.2. Furthermore,

sup
s<t

|X̌g′
st(w)|

|t− s|γ|w|
= sup

s<t

|X̌b′
st(φ̂(w))|

|t− s|γ|φ̂(w)|
<∞ ∀w ∈ 〈Wn

d 〉

due to condition 3. of Definition 4.8.2, and thus we indeed have X̌g′ ∈ Rγ
2 ([0, T ],Rd).

We also have that φ̂φ(x)− x ∈ kerφ for all x ∈ 〈Fd〉, since

φ(φ̂φ(x)− x) = φφ̂φ(x)− φ(x) = φ(x)− φ(x) = 0.

Thus,
X̌b′(x) = X̌b′(φ̂φ(x)) = X̌g′(φ(x)) ∀x ∈ 〈F n

d 〉.



62 CHAPTER 4. ROUGH PATHS



Chapter 5

Regularity structures

5.1 General concept
Definition 5.1. (Definition 3.1 [Hai15], Definition 2.1 [Hai14], Definition 13.1 [FH14])
Let

1. A ⊆ R be bounded from below and locally finite, i.e. A ∩ (−∞, r) finite for all r ∈ R,

2. (Tα)α∈A be a family of non-trivial (i.e. dimTα 6= 0 ∀α ∈ A) Banach spaces over R with
norms (‖·‖α)α∈A and let T :=

⊕
α∈A Tβ be endowed with the norm ‖·‖ :=

∑
α∈A‖πα·‖α,

where πα is the canonical projection on Tα,

3. G ⊆ L(T, T ) be a group of invertible continuous linear operators with composition law, i.e.
id ∈ G, Γ1Γ2 ∈ G and Γ−1 ∈ G for all Γ1, Γ2, Γ ∈ G, with the property that

Γx− x ∈ T<α :=
⊕

β∈A: β<α
Tβ ∀Γ ∈ G,α ∈ A, x ∈ Tα (5.1)

Then, T := (A, T,G) is called a regularity structure with index set A, model space T and structure
group G.

We say that a regularity structure T̄ = (Ā, T̄ , Ḡ) is a sub regularity structure of a regularity
structure T = (A, T,G) if Ā ⊆ A, Ḡ ⊆ G and T̄ is a closed subspace of T such that T̄α
is a sub Banach space of Tα for all α ∈ Ā (loosely based on Section 2.1 [Hai14]). We put
T≥α :=

⊕
β∈A: β≥α Tβ and shortly write ‖·‖α also for the seminorms ‖πα·‖α on T .

Remark 5.2. For each A and (Tα)α fulfilling Properties 1. and 2. there is a maximal structure
group given by

Gmax := {Γ ∈ L(T, T )|Γx− x ∈ T<α ∀α ∈ A, x ∈ Tα},

which contains all possible choices of structure groups. Hence, choosing a structure group for a
given model space means choosing certain additional properties that the elements have to fulfill,
e.g. multiplicity with respect to a given product on T .
Remark 5.3. All of the examples of regularity structures (A, T,G) that we present later will
satisfy the additional property that 0 ∈ A and that there is a unique element 1 ∈ T0 such that
‖1‖0 = 1 and Γ1 = 1 for all Γ ∈ G.

63
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The original definition of a regularity structure in [Hai14] contained an even stronger require-
ment for the subspace T0, namely that T0 = 〈1〉, where 1 is such that ‖1‖0 = 1 and Γ1 = 1 for
all Γ ∈ G. Definition 5.1 here is exactly the one given in [Hai15].

Definition 5.4. (Definition 2.17 [Hai14]) Let T = (A, T,G) be a regularity structure and (S, d)
be a metric space. A map Γ : S × S → G is called a G-bimap1 over S if

1. Γxx = id for all x ∈ S,

2. ΓxyΓyz = Γxz for all x, y, z ∈ S,

3. For every compact subset K ⊆ S and every β ∈ A, there is a constant CK,β such that

‖Γxya‖θ≤ CK,β‖a‖d(x, y)β−θ ∀x, y ∈ K, a ∈ Tβ , θ < β.

Definition 5.5. For a regularity structure T = (A, T,G), let V be a subspace of T such that
Vα := V ∩ Tα is a (possibly {0}) closed subspace of Tα for all α ∈ A. Then, V is called a sector
of T if V is invariant under G, i.e.

ΓV ⊆ V ∀Γ ∈ G.

We call the sector function-like if Vα = {0} for all α ∈ A with α < 0 and V0 = 〈1〉, where 1 is
some element such that Γ1 = 1 for all Γ ∈ G.

Definition 5.6. (Definition 3.1 [Hai14]) For a given regularity structure (A, T,G), a G-bimap Γ
over (S, d), γ > minA, a closed subset M ⊆ S and a sector V of (A, T,G), the space of modelled
distributions DγΓ(M,V ) of order γ consists of all functions f : M → V<γ such that

|||f |||K := sup
x∈K

sup
α<γ
‖f(x)‖α + sup

x,y∈K:
0<d(x,y)≤1

sup
α<γ

‖f(x)− Γxyf(y)‖α
d(x, y)γ−α <∞

for all compact K ⊆M . We shortly write DγΓ := DγΓ(S, T ).

The following definition is inspired by the definition of automorphisms in Section 2.4 [Hai14].

Definition 5.7. Let T = (A, T,G) and T̄ = (Ā, T̄ , Ḡ) be regularity structures. Furthermore,
let ϕ : T → T̄ be a continuous linear map such that ϕTβ ⊆ T̄+

β for all β ∈ A and ψ : Ḡ→ G be
a group homomorphism. If

1. Γϕ = ϕψ(Γ ) ∀Γ ∈ Ḡ,

2. for every G-bimap Γ the function (x, y) 7→ ψ(Γxy) is a Ḡ-bimap,

then ϕ is called a model space morphism and ψ is called a structure group morphism. The pair
(ϕ,ψ) is called a regularity structure morphism from T̄ to T . The morphisms ϕ, ψ and (ϕ,ψ)
are called homogeneous if ϕTβ ⊆ T̄β .

For x ∈ Rd and δ > 0 let Sδ
x ∈ L(S (Rd),S (Rd)) be given by

(Sδ
xu)(y) := δ−du(δ−1(y − x)).

Furthermore, for any r ∈ N, let Br(Rd) denote the set of all u ∈ S (Rd) compactly supported in
B(0, 1) such that ‖u‖Cr ≤ 1.

1This nonstandard terminology just used for the purpose of this thesis.
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Definition 5.8. (Definition 2.17 [Hai14]) Let T = (A, T,G) be a regularity structure, Π : Rd →
L(T,S ′(Rd)) be a function and Γ be a G-bimap over Rd. Furthermore, let r be the smallest
integer such that r > |minA|. We call (Π,Γ) a model for T on Rd if

1. ΠxΓxy = Πy for all x, y ∈ Rd,

2. For every compact subset K ⊆ Rd and every β ∈ A, there is a constant CK,β such that

|(Πxa)(Sδ
xu)| ≤ CK,β‖a‖δβ ∀x ∈ K, δ ∈ (0, 1], a ∈ Tβ , u ∈ Br(Rd).

Let M (Rd) denote the set of all models for T on Rd. If T satisfies the additional property of
Remark 5.3, then let M1(Rd) ⊆M (Rd) denote those models with the additional property that
Πx1 is the constant one function for all x ∈ Rd.

Definition 5.9. (Definition 14.3 [FH14], based on Definition 4.1 and Definition 4.6 [Hai14]) Let
V, V̄ be two sectors of a regularity structure T = (A, T,G). A product on V × V̄ is a continuous
bilinear map ⋄ : V × V̄ → T such that

1. Vα ⋄ Vβ ⊆ Tα+β ,

2. Γ(v ⋄ v̄) = Γv ⋄ Γv̄ ∀Γ ∈ G, v ∈ V, v̄ ∈ V̄ .

Theorem 5.10. (Section 4.2 and Theorem 4.16 [Hai14], Section 14.2 and Proposition 14.7.
[FH14]) Let V be a function-like sector of a regularity structure T = (A, T,G) with ϑ being the
lowest non-zero homogeneity of V and ⋄ a product on V ×V such that V ⋄V ⊆ V . Furthermore,
let γ > 0, h ∈ Ck(R,R) for some k ∈ N with k ≥ γ/ϑ + 1 and Γ a G-bimap over Rd. Then,
F 7→ (h ◦ F )γ , where

(h ◦ F )γ(x) :=
bγ/ϑc∑
n=0

π<γ
h(n)(F 1(x))

n! (F (x)− F 1(x)1)⋄n,

v⋄0 := 1 and F 1(x)1 := π0F (x), is a continuous map from DγΓ into itself. More precisely, for
any compact K ⊆ Rd and any D > 0, there is a CK,D > 0 such that

|||(h ◦ F )γ − (h ◦G)γ |||γ,K ≤ CK,D|||F −G|||γ,K ∀F,G ∈ DγΓ : |||F |||γ,K + |||G|||γ,K ≤ D.

Definition 5.11. (Section 2.2 and Definition 3.7 [Hai14])

1. For n ∈ N0 and α ∈ (0, 1], let Cn+α(Rd) denote those functions in C(Rd,R) which are n
times differentiable and whose n-th derivative is Hölder continuous with exponent α. We
endow Cn+α(Rd) with the family of seminorms

‖f‖Cn+α,K := sup
x,y∈K

|f (n)(x)− f (n)(y)|
‖x− y‖α

+
n∑
k=0

sup
x∈K
|f (k)(x)|

indexed by all compact K ⊂ Rd.

2. Put C0(Rd) := L∞loc(Rd,R).

3. For n ∈ N and α ∈ [0, 1), let Cα−n(Rd) denote those distributions % ∈ D′(Rd) such that for
each K ⊂ Rd, we have

‖%‖Cα−n,K := sup
u∈Bn(Rd)

sup
x∈K

sup
δ∈(0,1]

%(Sδ
xu)

δα−n
<∞.

We endow Cα−n(Rd) with this family of seminorms.
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Theorem 5.12. Reconstruction Theorem (Theorem 3.10 and Corollary [Hai14]) Let (Π,Γ)
be a model over Rd for a regularity structure T = (A, T,G) and γ > α := minA. Then, there is
a continuous linear map Rα : DγΓ → Cα(Rd,R) with the property that for every compact K ⊂ Rd
there is a constant CK > 0 such that

|(RαF −ΠxF (x))(Sδ
xu)| ≤ CK|||F |||K′δ

γ ∀x ∈ K, δ ∈ (0, 1], F ∈ DγΓ, u ∈ B
r(Rd), (5.2)

where K′ :=
⋃
x∈K B̄(x, 1). Such a map is called a reconstruction map. We furthermore have

that for every compact K ⊂ Rd there is a C ′K such that

‖RαF‖Cα,K ≤ C ′K|||F |||γ,K′ .

If γ > 0, then the reconstruction map is unique and for each F ∈ DγΓ, the distribution RF is
uniquely characterized by equation (5.2).

Theorem 5.13. (Special case of Proposition 3.28 [Hai14]) Let V be a function-like sector of a
regularity structure T = (A, T,G) with ϑ being the lowest non-zero homogeneity of V . Let (Π,Γ)
be a model for T on Rd such that Πx1 is the constant one function for all x ∈ Rd. Then, for
γ > ϑ, Rγ maps DγΓ(V ) into Cϑ(Rd) and we have

(RγF )(x)1 = π0F (x) ∀F ∈ DγΓ(V ).

In particular, we have Πxa ∈ Cϑ(Rd) for all a ∈ V .

Note that the ’in particular’ part indeed follows from the general statement since Γ·xa ∈ DγΓ(V )
for all γ large enough and

Πxa−ΠyΓyxa = 0 ∀ y ∈ Rd,
thus Πxa = Rγ(Γ·xa) ∈ Cϑ(Rd) since the reconstruction of a modeled distribution is characterized
by equation (5.2).

5.2 Construction of a regularity structure based on a Hopf
algebra

5.2.1 General construction
We closely follow Section 4.3 [Hai14] in this subsection. Let (H, ⋄,∆,S) be a locally finite dimen-
sional connected graded Hopf algebra over R whose grading differentiates into a d-dimensional
grading

H =
⊕
n∈Nd0

Hn

for some d ∈ N, i.e.

Hn ⋄Hm ⊆ Hn+m, ∆Hn ⊆
⊕

0≤k≤n
Hk ⊗Hn−k, SHn ⊆ Hn ∀n,m ∈ Nd0.

With locally finite dimensional we mean that Hn is finite dimensional for all n ∈ Nd0. The notion
of a d-dimensional grading of course reduces to the usual notion of a grading in the case d = 1
(see Definition 2.17). Also, we obviously get back a familiar one dimensional grading (Ȟi)i∈N0

by putting
Ȟi :=

⊕
n∈Nd0 : |n|=i

Hn.
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Now, choose scaling factors α = (αi)di=1, where αi ∈ R+, and put 〈α, n〉 :=
∑d
i=1 αini for all

n ∈ Nd0. Then, we may introduce the index set A and the model space T as

A :=
⋃
n∈Nd0

{〈α, n〉}, Tγ :=
⊕

n∈Nd0 : 〈α,n〉=γ

Hn, T :=
⊕
γ∈A

Tγ .

Let G denote the set of characters on T = H, i.e.

G := {g ∈ H∗|g(x ⋄ y) = g(x)g(y)∀x, y ∈ H}.

G is a group together with the convolution product ∗ on H∗ = L(H,R). Then, define linear
maps Γ̄l/r : H∗ → L(H,H) by

Γ̄lg := (g ⊗ id)∆

and
Γ̄rg := (id⊗ g)∆.

In both cases, we have the following.

Theorem 5.14. (Based on Section 4.3 [Hai14]) (A, T, Γ̄lg) and (A, T, Γ̄rg) are regularity structures
with minA = 0. Γ̄l : G → Γ̄lg is a group antiisomorphism and Γ̄r : G → Γ̄rg is a group
isomorphism. The structure groups have the characterizations

Γ̄lG = {Γ ∈ L(H,H)|Γm⋄ = m⋄(Γ ⊗ Γ ), ∆Γ = (Γ ⊗ id)∆}

resp.
Γ̄rG = {Γ ∈ L(H,H)|Γm⋄ = m⋄(Γ ⊗ Γ ), ∆Γ = (id⊗ Γ )∆}.

In particular, ⋄ is a product on the whole T × T .

Proof. (Based on Section 4.3 [Hai14]) We only show the case of Γ̄lG, the other case is completely
analogous.

1. Γ̄l is a group antiisomorphism. For all g, h ∈ G, we have

Γ̄lgΓ̄lh = (g ⊗ id)∆(h⊗ id)∆ = (h⊗ g ⊗ id)(id⊗∆)∆ = (h⊗ g ⊗ id)(∆⊗ id)∆
= ((h ∗ g)⊗ id)∆ = Γ̄lh∗g.

2. (A, T, Γ̄lg) is a regularity structure. The only thing left to show is (5.1). Let g ∈ G, n ∈ Nd0
and x ∈ Hn be arbitrary. Then, x ∈ T〈α,n〉 and by the multi grading of ∆,

Γ̄lgx− x = (g ⊗ id)∆x− x = ((g − ε)⊗ id)∆x ∈
⊕
m<n

Hm = T<〈α,n〉,

since (g − ε)1 = 0 because g is in G.

3. The given characterization of Γ̄lG holds. First of all, for any g ∈ G, we have

Γ̄lgm⋄ = (g ⊗ id)∆m⋄ = (g ⊗ id)(m⋄ ⊗m⋄)τ1324(∆⊗∆) = m⋄(g ⊗ g ⊗ id⊗ id)τ1324(∆⊗∆)
= m⋄(g ⊗ id⊗ g ⊗ id)(∆⊗∆) = m⋄(Γ̄lg ⊗ Γ̄lg).

and

∆Γ̄lg = ∆(g ⊗ id)∆ = (g ⊗ id⊗ id)(id⊗∆)∆ = (g ⊗ id⊗ id)(∆⊗ id)∆ = (Γ̄lg ⊗ id)∆.
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Thus, we have shown the ’⊆’ part of the characterization. To show the ’⊇’ part, let
Γ ∈ L(H,H) such that Γm⋄ = m⋄(Γ ⊗Γ ) and ∆Γ = (Γ ⊗ id)∆ be arbitrary. Put h := εΓ .
Then,

hm⋄ = εΓm⋄ = εm⋄(Γ ⊗ Γ ) = (ε⊗ ε)(Γ ⊗ Γ ) = (h⊗ h),
which implies that h ∈ G. Also,

Γ = (ε⊗ id)∆Γ = (ε⊗ id)(Γ ⊗ id)∆ = (h⊗ id)∆ = Γ̄lh.
Hence, the ’⊇’ part is also shown.

5.2.2 Polynomial case
This subsection is a more explicit formulation of what is described mostly in words in Remark
4.19 [Hai14]. Considering the polynomial Hopf algebra Pd, we have an obvious d-dimensional
grading given by (〈Xn〉)n∈Nd0 . But, as its natural to choose all scaling factors αi = 1, we get
A = N0 and T =

⊕
k∈A Tk with Tk = Pd,k. We identify Pd∗ with the space of formal series of

differential operators (Dd)Π via the duality pairing (3.3), writing
〈D|(p) := 〈D, p〉

for D ∈ (Dd)Π, p ∈ Pd.

Γ̄〈∂n|Xm = (〈∂n| ⊗ id)∆◦Xm =
∑

0≤l≤m

(
m

l

)
(∂nXl)(0)︸ ︷︷ ︸

=δn,ln!

Xm−l =
{

m!
(m−n)!X

m−n if n ≤ m
0 if n � m

= ∂nXm

Thus, for a formal series D of differential operators, D ∈ (Dd)Π ⊂ L(Pd,Pd), we have
Γ̄〈D| = D.

Since the group of characters G can be written as
G =

{
〈D|
∣∣D ∈ exp◦(Dd,1)

}
,

we may write the structure group as
Γ̄G = exp◦(Dd,1),

i.e. the structure group consists of the composition exponentials of first order differential opera-
tors. Since

exp◦(
d∑
i=1

ai∂i) = exp◦(a1∂1) · · · exp◦(ad∂d)

due to commutativity of (Dd, ◦),

exp◦(ai∂i)Xj =
∞∑
k=0

aki
k! ∂

k
i Xj = Xj + δi,jai

and Γ(x • y) = Γx • Γy for all Γ ∈ Γ̄G, we have

exp◦(
d∑
i=1

ai∂i)Xn =
d∏
i=1

(Xi + ai)ni =: (X + a)n ∀ a ∈ Rd,

i.e. the structure group Γ̄G is nothing but the group of translations of the d-dimensional polyno-
mials.
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5.2.3 Connes-Kreimer Hopf algebra case
This section is basically a short formulation of what was suggested in Remark 4.25 [Hai14].
Starting from the Hopf algebra (〈Fd〉,�,∆?,S?�), the one dimensional grading and the scaling
factor γ, we get a regularity structure T f = (Af , T f , Γ̄f

B), where B is the group of characters on
〈Fd〉, Af = γN0 and of course T f = 〈Fd〉 with T f

kγ = 〈Fd,k〉. The group B can be identified
with GrLk(〈Fd〉,∆�) via Theorem 3.34. The map Γ̄f is then recursively given by

Γ̄f
g1 = 1, Γ̄f

gbζci = g(bζci)1 + bΓ̄f
gζci, Γ̄f

g(ζ1 � ζ2) = Γ̄f
gζ1 � Γ̄f

gζ2.

Let M f
1([0, T ]) denote those models (Π,Γ) ∈ M f

1(R) such that Γst = id for s, t ∈ (−∞, 0] and
for s, t ∈ [T,∞).

Theorem 5.15. (Based on Section 4.4 [Hai14]) There is a bijective map I : R̂γ(R,Rd) →
M f

1([0, T ]) which maps a branched rough path X̂ to the unique model (Π,Γ) ∈ M f
1([0, T ]) such

that

(Πsx)(t) := X̂st(x), Γstx := (X̂ts ⊗ id)∆?x =
?∑

(x)

X̂ts(x1)x2 ∀ s, t ∈ [0, T ], x ∈ 〈Fd〉 (5.3)

Proof. Let X̂ ∈ R̂γ([0, T ],Rd) be arbitrary. By Theorem 4.13, there is a unique Γ̄f
G-bimap Γ

over R such that it fulfills (5.3) and such that Γst = id for s, t ∈ (−∞, 0] and for s, t ∈ [T,∞)
(just put Γst = Γ0t if s < 0 and Γst = ΓTt if s > T ). Furthermore, there is a unique Π on R
such that (5.3) holds and such that Πs = ΠtΓts for s, t ∈ R, in particular Πs = Π0 if s < 0 and
Πs = ΠT if s > T . For this Π and for every k ∈ N0, there is a Ck > 0 such that

|(Πsζ)(t)| ≤ Ck|t− s|γ|ζ| ∀ ζ ∈ Fd,k, t, s ∈ R

Thus, putting fs := Πsζ for some ζ ∈ Fd, we get

|(Πsx)(Sδ
su)| =

∣∣∣∣δ−1
∫
R
fs(t)u(δ−1(t− s)) dt

∣∣∣∣ =
∣∣∣∣∫

R
fs(s+ δt)u(t) dt

∣∣∣∣ ≤ ∫
R
|fs(s+ δt)||u(t)|dt

≤ C|ζ|δαT

for all s ∈ R and δ ∈ (0, 1]. By linearity and local finite dimensionality, the analytic condition for
Π in Definition 5.8 of a model follows. The map I is therefore well-defined. It is also injective,
since X̂st = (Πs·)(t) for all s, t ∈ [0, T ]. It only remains to show surjectivity.
Let (Π,Γ) ∈M f

1([0, T ]) be arbitrary. Then, due to Theorem 5.13, Πsx is a continuous function
for all s ∈ R and x ∈ 〈Fd〉. Due to continuity and the analytic condition for Π in Definition 5.8,
we have (Πtζ)(t) = 0 for all ζ ∈ Fd \ {1} and t ∈ R. Since Γ is a Γ̄f

G-bimap, for all k ∈ N0 there
is a Ck > 0 such that

|(Πsζ)(t)| = |(ΠtΓtsζ)(t) = ‖Γtsζ‖0 ≤ C|ζ||t− s|γ|ζ|.

Finally, due to Theorem 4.13 there is a X̂ ∈ R̂γ([0, T ],Rd) such that (5.3) holds for Π and Γ.

Definition 5.16. (Reformulation of Definition 3.2. [HK14]) For a branched rough path X̂ ∈
R̂γ([0, T ],Rd), the model (Π,Γ) = I(X̂) and n = bγ−1c, we call Dnγ

Γ the space of controlled
rough paths of X̂.

Applying Theorem 5.10 to Dnγ
Γ yields exactly the one-dimensional case of the composition

formula for controlled rough paths given in Equation (3.8) [HK14].
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5.2.4 Shuffle-deconcatenation Hopf algebra case
The same can be done for the Hopf algebra (〈Wd〉,�,∆⊗̇,S⊗̇� ), yielding a regularity structure
T w = (Aw, Tw, Γ̄w

Gw), where Gw denotes the group of characters on 〈Wd〉 and where again
Aw = γN0 and Tw = 〈Wd〉 with Tw

kγ = 〈Wd,k〉. This structure was already discussed in detail in
Section 4.4 [Hai14].

Here, we have the recursion

Γ̄w
g 1 = 1, Γ̄w

g (w ⊗̇ ei) = g(w ⊗̇ ei)1 + Γ̄w
g w ⊗̇ ei.

Due to Theorem 4.7, there is a straightforward analogue to Theorem 5.15 in this case.

5.3 Rough path structures revisited

5.3.1 Motivation
Another way to construct regularity structures for rough paths is to perform an abstract fixed
point iteration in the spirit of Section 15.2 [FH14]. The problem we look at is, for smooth
functions fi and drivers xi with xit = 0 for t ≤ 0,

dyt =
d∑
i=1

fi(yt)dxit

Putting ξit := ẋit, this may formally be reformulated as

ẏt =
d∑
i=1

fi(yt)ξit

or, as a formal integral equation,

yt − y0 =
d∑
i=1

∫ t

0
fi(yt)ξit dt.

Introducing the integration kernel K := χ[0,∞), we have

yt − y0 =
[
K ∗

( d∑
i=1

fi(y)ξi
)]

(t).

This may be translated to an abstract equation

Y = y01 +KẎ and Ẏ =
d∑
i=1

fi(Y )Ξi. (5.4)

for modeled distributions Y and Ẏ . The linear operator K acting on certain modeled distributions
corresponds to the convolution with the kernel K. It will turn out that K can be written as

(KF )(t) = I F (t) + (K ∗ RF )(t)1
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for some linear operator I acting on a sector of the model space which we want to introduce. In
view of Theorem 5.10, we will define fi(Y )Ξi as

∞∑
k=0

f
(k)
i (Y 1)
k! (Y − Y 1)kΞi.

and later cut off that infinite series at some level. Let therefore Y =
⋃∞
n=0 Yn be the set of

symbols necessary to describe Y for any family of smooth functions (fi)di=1 and Ẏ =
⋃∞
n=0 Ẏn

the set of symbols necessary to describe Ẏ . Starting from Y0 = {1}, we obtain the sets by
iteratively applying (5.4) and collecting the symbols we have not yet included, i.e.

Ẏ0 = {Ξi|i ∈ I}, Y1 = {I(Ξi)|i ∈ I},
Ẏ1 = {I(Ξi1) · · · I(Ξim)Ξj |m ∈ N, ik, j ∈ I}, Y2 = {I(I(Ξi1) · · · I(Ξim)Ξj)|m ∈ N, ik, j ∈ I},

...
...

Ẏn = {ζ1 · · · ζmΞi|m ∈ N, ζj ∈ Yn, i ∈ I}, Yn+1 = {I(ζ)|ζ ∈ Ẏn},

where I := N ∩ [1, d]. Obviously, we may identify

Y ≡ Td ∪ {1}, Ẏ ≡
d⋃
i=1

FdΞi

via
I(τ1 · · · τmΞi) ≡ bτ1 · · · τmci

5.3.2 Branched rough paths structure
Thus, as a model space, we put

T b = 〈Y〉 ⊕ 〈Ẏ〉 = 〈1〉 ⊕ 〈Td〉 ⊕
d⊕
i=1
〈FdΞi〉

with homogenities

|1| = 0, |Ξi| = γ − 1, |τ1 · · · τmΞi| = |τ1|+ · · ·+ |τm|+ γ − 1, |bζci| = |I(ζΞi)| = |ζ|+ γ

and hence index set
Ab := γN0 ∪ (γN− 1).

T b then can be turned into a comodule of (〈Fd〉,∆?) via

∆b : T b → 〈Fd〉 ⊗ T b, ∆bζΞi =
?∑

(ζ)

ζ1 ⊗ ζ2Ξi, ∆bbζci = ∆?bζci (5.5)

which allows us to define the action of some g ∈ 〈Fd〉∗ on T b as

Γ̄b
g := (g ⊗ id)∆b. (5.6)

Denoting the group of characters on 〈Fd〉 as B, we get a regularity structure T b := (Ab, T b, Γ̄b
B)

for branched rough paths. It is some kind of a generalisation of the rough paths structure given in
Definition 13.5. [FH14] for the case of γ ∈ (1/3, 1/2], though they work with a finite dimensional
model space there, which would also be possible here via truncation.
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Theorem 5.17. T b is a regularity structure. 〈Y〉 and 〈Ẏ〉 are sectors of T b.

Proof. The fact that Γ̄b
B is a structure group follows again from the grading of ∆? and the group

antimorphism property of Γ̄b (cf. Theorem 5.14). Since ∆b by definition maps 〈Y〉 to 〈Fd〉⊗〈Y〉
and 〈Ẏ〉 to 〈Fd〉 ⊗ 〈Ẏ〉, they are indeed sectors.

There is an obvious group isomorphism ψ given by ψ(Γ̄f
g) = Γ̄b

g , which is also a structure
group morphism. It can be expanded to an injective map

Φ : M f(R)→M b(R), Φ(Π,Γ) := (ϕ(Π), ψ(Γ))

via
ϕ(Π)xζ := Πxζ ∀ ζ ∈ 〈Y〉, ϕ(Π)xζ := d

dtΠxζ ∀ ζ ∈ 〈Ẏ〉.

We have that

Φ(M f
1(R)) =

{
(Π,Γ) ∈M b

1 (R)
∣∣ d

dtΠx�〈Y〉 = Πx∂
}

=: M b
ad(R),

where ∂ ∈ L(〈Y〉, 〈Ẏ〉) is generated by

∂1 := 0, ∂bζci := ζΞi.

Note that ∂Γ �〈Y〉 = Γ∂ for all Γ in Γ̄b
G. The models in M b

ad(R) are called admissible models.

5.3.3 Integration against the kernel and solving RDEs
We introduce I ∈ L(〈Ẏ〉, 〈Y〉) as

I(ζΞi) = bζci.

.

Theorem 5.18. I : 〈Ẏ〉 → 〈Y〉 is an abstract integration map of order 1 in the sense of
Definition 5.7 [Hai14] since

(i) I〈Ẏ〉α ⊆ 〈Y〉α+1,

(ii) IΓa− ΓIa ∈ 〈1〉 for every a ∈ 〈Ẏ〉 and Γ ∈ Γ̄b
B.

Proof. We have
|I(ζΞi)| = |bζci| = |ζ|+ γ = |ζΞi|+ 1

and

IΓ̄b
g(ζΞi)− Γ̄b

gI(ζΞi) = I
[
(Γ̄b
gζ)Ξi

]
− Γ̄b

gbζci = bΓ̄b
gζci − g(bζci)1− bΓ̄b

gζci = −g(bζci)1.

In the following, let � : 〈Y〉 × 〈Ẏ〉 → 〈Ẏ〉 be generated by

τ � (ζΞi) := (τ � ζ)Ξi ∀ τ ∈ Td ∪ {1}, ζ ∈ Fd, i ∈ {1, . . . , d}.

Theorem 5.19. A linear map Γ ∈ L(T b, T b) is in Γ̄b
B if and only if all of the following properties

are satisfied:

(i) Γx− x ∈ T b
<α for all α ∈ Ab and x ∈ T b

α ,
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(ii) Γ 〈Y〉 ⊆ 〈Y〉 and Γ 〈Ẏ〉 ⊆ 〈Ẏ〉,

(iii) IΓb− ΓIb ∈ 〈1〉 for every b ∈ 〈Ẏ〉,

(iv) Γa� Γb = Γ (a� b) for all a ∈ 〈Y〉 and b ∈ 〈Ẏ〉.

Proof.

1. Let Γ ∈ Γ̄b
B be arbitrary. Let g ∈ B be such that Γ = Γ̄b

g . Properties (i) and (ii) hold by
Theorem 5.17, property (iii) holds by Theorem 5.18 and property (iv) holds since

Γ (τ � ζΞi) = (g ⊗ id)∆b(τ � ζΞi) =
(
(g ⊗ id)∆?(τ � ζ)

)
Ξi =

(
(g ⊗ id)(∆?τ �∆?ζ)

)
Ξi

=
(
(g ⊗ id)∆?τ

)
�
(
(g ⊗ id)∆?ζ

)
Ξi =

(
(g ⊗ id)∆bτ

)
�
(
(g ⊗ id)∆b(ζΞi)

)
= Γτ � Γ (ζΞi)

2. Let Γ ∈ L(T b, T b) be such that it satisfies all of the given properties. Denote by g the
element in 〈Fd〉∗ recursively generated by

g(1) := 1, g(bζci)1 := ΓI(ζΞi)− IΓ (ζΞi), g(ζ1 � ζ2) := g(ζ1)g(ζ2).

By the first and last equation, we get that g ∈ B. The claim we want to show is Γ = Γ̄b
g .

By (5.6) and (5.5) this is equivalent to the identities

Γτ = (g ⊗ id)∆?τ (5.7)

for all τ ∈ Td ∪ {1} and
Γ (ζΞi) =

(
(g ⊗ id)∆?ζ

)
Ξi (5.8)

for all ζ ∈ Fd.
First of all, we indeed have

Γ1 = 1 = (g ⊗ id)∆?1
by properties (i) and (ii) as well as

ΓΞi = Ξi =
(
(g ⊗ id)∆?1

)
Ξi

by property (i) and the fact that the Ξi have the lowest homogeneity of the regularity
structure. Thus, recalling the iterative scheme from the motivation, (5.7) holds on Y0 and
(5.8) holds on Ẏ0.
Assuming (5.8) holds on Ẏn, we get

Γ bζci = ΓI(ζΞi) = g(bζci)1 + IΓ (ζΞi) = g(bζci)1 + (g ⊗ b·ci)∆?ζ = (g ⊗ id)∆?bζci

for all ζ ∈ Ẏn, using in the second equality the definition of g and in the last equality the
definition of ∆? given in (3.22). Thus, it follows that (5.7) holds on Yn+1.
Assuming that (5.7) holds on Yn+1, we show that (5.8) holds on Ẏn+1 by an induction over
the number of trees of a symbol in Ẏn+1. Indeed, we first have for all τ ∈ Yn+1 that

Γ (τΞi) = Γτ � ΓΞi = (Γτ)Ξi =
(
(g ⊗ id)∆?τ

)
Ξi,

where we used property (iv). Then, if (5.8) holds for some ζΞi ∈ Ẏn+1, we get for all
τ ∈ Yn+1 that

Γ (τ � ζΞi) = Γτ � Γ (ζΞi) =
(
g ⊗ id)∆?τ

)
�
(
(g ⊗ id)∆?ζ

)
Ξi =

(
(g ⊗ id)(∆?τ �∆?ζ)

)
Ξi

=
(
(g ⊗ id)∆?(τ � ζ)

)
Ξi,
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where we used property (iv) again in the first identity, the definition of g in the third
identity and in the last identity the definition of ∆? given in (3.22). Thus, the induction
over the number of trees is complete.
Finally, by an induction over n, we obtain the claim.

Theorem 5.20. Let α > 0, f ∈ Ck(R,R) for some k ∈ N with k ≥ α/γ+1 and (Π,Γ) ∈M b(R).
Then, Y 7→ (f(Y )Ξi)α+γ−1, where

(f(Y )Ξi)α+γ−1(t) :=
bα/γc∑
n=0

π<α+γ−1
f (n)(Y 1(t))

n! (Y (t)− Y 1(t)1)�nΞi

and Y 1(t)1 := π0Y (t), is a continuous map from DαΓ(R, 〈Y〉) into Dα+γ−1
Γ (R, 〈Ẏ〉). More pre-

cisely, for any compact K ⊆ Rd and any D > 0, there is a CK,D > 0 such that

|||(h(F )Ξi)α+γ−1 − (h(F )Ξi)α+γ−1|||α+γ−1,K ≤ CK,D|||F −G|||α,K (5.9)

for all F,G ∈ DαΓ(R, 〈Y〉) such that |||F |||α,K + |||G|||α,K ≤ D.

Proof. First extend T b to 〈Fd〉 ⊕
⊕d

i=1〈FdΞi〉 with Γ̄b
g�〈Fd〉 = Γ̄f

g and apply Theorem 5.10 to
DαΓ(R, 〈Fd〉) to get Y 7→ (f(Y ))α. For all G ∈ DαΓ(R, 〈Fd〉) and all compact K ⊂ R, we have

sup
s,t∈K:

0<|t−s|≤1

sup
β<α+γ−1

‖G(t)Ξi − Γts(G(s)Ξi)‖β
|t− s|α+γ−1−β = sup

s,t∈K:
0<|t−s|≤1

sup
β<α+γ−1

‖(G(t)− ΓtsG(s))Ξi‖β
|t− s|α+γ−1−β

= sup
s,t∈K:

0<|t−s|≤1

sup
β<α+γ−1

‖G(t)− ΓtsG(s)‖β−γ+1

|t− s|α+γ−1−β

= sup
s,t∈K:

0<|t−s|≤1

sup
θ<α

‖G(t)− ΓtsG(s)‖θ
|t− s|α−θ

and
sup
t∈K

sup
β<α+γ−1

‖G(t)Ξi‖β = sup
t∈K

sup
β<α+γ−1

‖G(t)‖β−γ+1 = sup
t∈K

sup
θ<α
‖G(t)‖θ,

and therefore |||GΞi|||α+γ−1,K = |||G|||α,K. Thus, (f(Y )Ξi)α+γ−1 indeed is an element of the space
Dα+γ−1

Γ (R, 〈Ẏ〉) and we get the Lipschitz bounds (5.9) from those in Theorem 5.10.

For the remainder of the discussion, we confine ourselves to a basic outline. The idea is
to convolute the kernel K with the reconstructions of modeled distributions in DαΓ(R, 〈Ẏ〉) for
some α > 0. Since those reconstructions live in Cγ−1(R) and K is a 1-regularizing kernel in
the sense of Assumption 5.1 [Hai14], it is indeed possible to perform such a convolution and
to obtain a continuous function in Cγ(R) as a result, if we further restrict the set of models
in order to get sufficient decay at −∞. We do this by simply demanding that Γst = id for
s, t ≤ 0, thus this restricted set will still contain the usual setting of rough paths where everything
happens on a compact interval of the form [0, T ]. Now, we can define an abstract kernel operator
Kα : DαΓ([0,∞), 〈Ẏ〉)→ Dα+1

Γ ([0,∞), 〈Y〉) via

(KαF )(t) := I F (t) + (K ∗ RαF )(t) 1.
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This operator then obviously fulfills the property that

Rα+1KαF = K ∗ RαF ∀F ∈ DαΓ(〈Ẏ〉).

By showing appropriate Lipschitz bounds for KαF relative to F , we then see that there is T > 0
such that

Ψ : Dα+1−γ
Γ ([0, T ], 〈Y〉)→ Dα+1−γ

Γ ([0, T ], 〈Y〉), Ψ(Z) := ys1 +Kα
d∑
i=1

(fi(Z)Ξi)α

is a contraction, and therefore has a unique fixed point.

5.3.4 Geometric rough paths structure
For weakly geometric rough paths, we consider the model space

T g = 〈Wd〉 ⊕
d⊕
i=1
〈WdΞi〉,

since the kernel of the linear map

φT : T b → T g, φT (1) := 1, φT (τ) := φ(τ) ∀ τ ∈ 〈Td〉, φT (ζΞi) := φ(ζ)Ξi ∀ ζ ∈ 〈Fd〉,

consists of those linear combinations of symbols which will vanish through integration by parts.
Here, φ : 〈Fd〉 → 〈Wd〉 is again the Hopf algebra endomorphism from Theorem 4.14. As for the
case of branched rough paths, T g then can be turned into a comodule of now (〈Wd〉,∆⊗̇) via

∆g : T g → 〈Wd〉 ⊗ T g, ∆gwΞi =
⊗̇∑

(w)

w1 ⊗ w2Ξi, ∆gw = ∆⊗̇w

which allows us to define the action of some g ∈ 〈Wd〉∗ on T g as

Γ̄g
g := (g ⊗ id)∆g.

Recalling the group Gw of characters on 〈Wd〉, we get a regularity structure (Ag, T g, Γ̄g
Gw) for

weakly geometric rough paths. In the case of γ ∈ (1/3, 1/2], it again reduces to the rough
paths structure given in Definition 13.5. [FH14] after a suitable truncation. With ψ(Γ̄g

g) := Γ̄b
gφ,

(φT , ψ) can be shown to be a regularity structure morphism and since φT is surjective and ψ
injective, there is a sub regularity structure of T b we may identify T g with. Thus, all the concepts
developed for T b in the previous subsections can be translated to the case of T g.
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Frequently used notation

1 Unit element of an algebra, 4

∆� The coproduct which is dual to the shuffle product �, 20

∆? Connes-Kreimer coproduct of cuts of trees and forests, 37

∆̃ The reduced coproduct for some coproduct ∆, 7∑
(c) c1 ⊗ c2 Sweedler’s notation of some coproduct value ∆c, 4

ε Counit of a coalgebra, 4

τ̂ Flip, 4

m⋄ Linear map corresponding to the bilinear product ⋄, 4

Pd Space of polynomials in d dimensions, 16

S Antipode of an Hopf algebra, 7

T(V ) Tensor algebra of some vector space V, 20

u Unit map of an algebra, 4

V ∗ Algebraic dual space of the vector space V , 3

WI Set of words over an alphabet I, 44

〈 · , · 〉 A duality pairing of two vector spaces, 12

⋄ Canonical algebra product on A⊗A for some algebra (A, ⋄), 5

� Shuffle product, 23

? Product on trees and forests dual to the coproduct ∆?, 42
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Index

admissible cut, 40
algebra, 3

graded, 9
homomorphism, 4

algebraic dual space, 3
antipode, 7

property, 7, 25, 30
recursion formula, 10

antisymmetry, 26

Baker-Campbell-Hausdorff series, 36
bialgebra, 5

graded, 9
homomorphism, 5
truncated, 30

branched rough path, 55
Butcher group, 43

character, 32
coalgebra, 4

graded, 9
homomorphism, 4

coassociativity, 4
cocommutativity, 4
coideal, 4
comodule, 5
compatibility requirements, 5, 25

truncated, 30
concatenation, 20
connected grading, 10
controlled rough path, 69
convolution product, 5
coproduct, 4

reduced, 7
counit, 4

property, 25
counital coalgebra, 4
crown, 40

deconcatenation, 23
decorations, 37
dual

algebra, 14
basis, 12
bialgebra, 14
coalgebra, 14
Hopf algebra, 14
operator, 13
pair, 12

dual space
algebraic, 3
topological, 3

duality pairing, 12
induced, 12

empty cut, 40
empty forest, 37

empty word, 44

filtration, 10
flip, 4
forests, 37

undecorated, 37
formal series, 24
full cut, 40
function-like sector, 64

geometric rough path, 47, 48
grading, 10
Grossman-Larson product, 43
group-like elements, 31

truncated, 31

homomorphism
algebra, 4
bialgebra, 5
coalgebra, 4
Hopf algebra, 7

Hopf algebra, 7
graded, 9
homomorphism, 7
truncated, 30

ideal, 4
index set, 63
induced duality pairing, 12

Jacobi’s identity, 26

labels, 37
length of a word, 44
Lie

algebra, 26
bracket, 26
polynomials, 35
series, 35

model space, 63
modelled distributions, 64
multi indices, 15

pair of dual vector spaces, 12
polynomial algebra, 16
primitive elements, 31
product

in a regularity structure, 65

quotient
algebra, 29
coalgebra, 29

reconstruction theorem, 66
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reduced coproduct, 7
regularity structure, 63
rough path

branched, 55
geometric, 47, 48

sector, 64
shuffle product, 23
structure group, 63
sub regularity structure, 63
subalgebra, 3
subcoalgebra, 4
Sweedler’s notation, 4

tensor algebra, 20
tensor product, 3
topological dual space, 3
trees, 37

undecorated, 37
truncated

algebra, 30
bialgebra, 30
coalgebra, 30
Hopf algebra, 30

trunk, 40
two-sided coideal, 4
two-sided ideal, 4

undecorated forests, 37
unit element, 4
unit map, 4
unital algebra, 4

words, 44
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