Rosa Lili Dora Preiß is a researcher in the Nonlinear Algebra group of Bernd Sturmfels at the Max-Planck Institute for Mathematics in the Sciences Leipzig.


Research interests

  • Algebraic geometry of paths
  • Iterated-integral signatures, rough paths and regularity structures
  • Algebraic tools in stochastic analysis and mathematical physics
  • Renormalisation procedures and the amplituhedron
  • Invariant theory
  • Category theory and Operads
  • Machine learning and data science


Rosa Preiß. An algebraic geometry of paths via the iterated-integral signature. Preprint, November 2023. arXiv:231.17886 [math.RA].

Cristopher Salvi, Joscha Diehl, Terry Lyons, Rosa Preiß and Jeremy Reizenstein. A structure theorem for streamed information. Journal of Algebra, Volume 634, November 2023. doi:10.1016/j.jalgebra.2023.07.024.

Carlo Bellingeri, Peter K. Friz, Sylvie Paycha and Rosa Preiß. Smooth rough paths, their geometry and algebraic renormalization. Vietnam Journal of Mathematics, Volume 50, June 2022. doi:10.1007/s10013-022-00570-7.

Joscha Diehl, Rosa Preiß, Micheal Ruddy and Nikolas Tapia. The moving frame method for iterated-integrals: Orthogonal invariants. Foundations of Computational Mathematics, Volume 23, June 2022. doi:10.1007/s10208-022-09569-5

Joscha Diehl, Terry Lyons, Rosa Preiß and Jeremy Reizenstein. Areas of areas generate the shuffle algebra. e-Print archive, July 2021. arXiv:2002.02338 [math.RA].

Laura Colmenarejo and Rosa Preiß. Signatures of paths transformed by polynomial maps. Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, Volume 61, Issue 4, Pages 695–717, December 2020. doi:10.1007/s13366-020-00493-9.

Yvain Bruned, Ilya Chevyrev, Peter K. Friz and Rosa Preiß. A rough path perspective on renormalisation. Journal of Functional Analysis, Volume 277, Issue 11, 108283, December 2019. doi:10.1016/j.jfa.2019.108283.