Rosa Lili Dora Preiß is a researcher in the Nonlinear Algebra group of Bernd Sturmfels at the Max-Planck Institute for Mathematics in the Sciences Leipzig.
Research interests
- Algebraic geometry of paths
- Iterated-integral signatures, rough paths and regularity structures
- Algebraic tools in stochastic analysis and mathematical physics
- Renormalisation procedures and the amplituhedron
- Invariant theory
- Category theory and Operads
- Machine learning and data science
Papers
Rosa Preiß. An algebraic geometry of paths via the iterated-integral signature. Preprint, November 2023. arXiv:231.17886 [math.RA].
Cristopher Salvi, Joscha Diehl, Terry Lyons, Rosa Preiß and Jeremy Reizenstein. A structure theorem for streamed information. Journal of Algebra, Volume 634, November 2023. doi:10.1016/j.jalgebra.2023.07.024.
Carlo Bellingeri, Peter K. Friz, Sylvie Paycha and Rosa Preiß. Smooth rough paths, their geometry and algebraic renormalization. Vietnam Journal of Mathematics, Volume 50, June 2022. doi:10.1007/s10013-022-00570-7.
Joscha Diehl, Rosa Preiß, Micheal Ruddy and Nikolas Tapia. The moving frame method for iterated-integrals: Orthogonal invariants. Foundations of Computational Mathematics, Volume 23, June 2022. doi:10.1007/s10208-022-09569-5
Joscha Diehl, Terry Lyons, Rosa Preiß and Jeremy Reizenstein. Areas of areas generate the shuffle algebra. arXiv.org e-Print archive, July 2021. arXiv:2002.02338 [math.RA].
Laura Colmenarejo and Rosa Preiß. Signatures of paths transformed by polynomial maps. Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, Volume 61, Issue 4, Pages 695–717, December 2020. doi:10.1007/s13366-020-00493-9.
Yvain Bruned, Ilya Chevyrev, Peter K. Friz and Rosa Preiß. A rough path perspective on renormalisation. Journal of Functional Analysis, Volume 277, Issue 11, 108283, December 2019. doi:10.1016/j.jfa.2019.108283.