Rosa Lili Dora Preiß is a researcher in the Nonlinear Algebra group of Bernd Sturmfels at the Max-Planck Institute for Mathematics in the Sciences Leipzig.


Research interests

  • Iterated-integral signatures, rough paths and regularity structures
  • Algebraic tools in stochastic analysis and mathematical physics
  • Invariant theory
  • Renormalisation procedures
  • Category theory and Operads
  • Data Science


Carlo Bellingeri, Peter K. Friz, Sylvie Paycha and Rosa Preiß. Smooth rough paths, their geometry and algebraic renormalization. e-Print archive, November 2021. arXiv:2111.15539 [math.PR]

Joscha Diehl, Rosa Preiß, Micheal Ruddy and Nikolas Tapia. The moving frame method for iterated-integrals: Orthogonal invariants. e-Print archive, April 2021. arXiv:2012.05880 [math.DG]

Joscha Diehl, Terry Lyons, Rosa Preiß and Jeremy Reizenstein. Areas of areas generate the shuffle algebra. e-Print archive, July 2021. arXiv:2002.02338 [math.RA].

Laura Colmenarejo and Rosa Preiß. Signatures of paths transformed by polynomial maps. Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, Volume 61, Issue 4, Pages 695–717, December 2020. doi:10.1007/s13366-020-00493-9

Yvain Bruned, Ilya Chevyrev, Peter K. Friz and Rosa Preiß. A rough path perspective on renormalisation. Journal of Functional Analysis, Volume 277, Issue 11, 108283, December 2019. doi:10.1016/j.jfa.2019.108283